Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Open Res Eur ; 2: 118, 2022.
Article in English | MEDLINE | ID: mdl-37645295

ABSTRACT

BACKGROUND: Biogeochemical-Argo floats are collecting an unprecedented number of profiles of optical backscattering measurements in the global ocean. Backscattering (BBP) data are crucial to understanding ocean particle dynamics and the biological carbon pump. Yet, so far, no procedures have been agreed upon to quality control BBP data in real time. METHODS: Here, we present a new suite of real-time quality-control tests and apply them to the current global BBP Argo dataset. The tests were developed by expert BBP users and Argo data managers and have been implemented on a snapshot of the entire Argo dataset. RESULTS: The new tests are able to automatically flag most of the "bad" BBP profiles from the raw dataset. CONCLUSIONS: The proposed tests have been approved by the Biogeochemical-Argo Data Management Team and will be implemented by the Argo Data Assembly Centres to deliver real-time quality-controlled profiles of optical backscattering. Provided they reach a pressure of about 1000 dbar, these tests could also be applied to BBP profiles collected by other platforms.

2.
Opt Express ; 28(16): 24214-24228, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752404

ABSTRACT

Different techniques exist for determining chlorophyll-a concentration as a proxy of phytoplankton abundance. In this study, a novel method based on the spectral particulate beam-attenuation coefficient (cp) was developed to estimate chlorophyll-a concentrations in oceanic waters. A multi-layer perceptron deep neural network was trained to exploit the spectral features present in cp around the chlorophyll-a absorption peak in the red spectral region. Results show that the model was successful at accurately retrieving chlorophyll-a concentrations using cp in three red spectral bands, irrespective of time or location and over a wide range of chlorophyll-a concentrations.


Subject(s)
Chlorophyll A/analysis , Deep Learning , Spectrum Analysis , Bias , Databases as Topic , Neural Networks, Computer , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...