Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Gene ; 843: 146799, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35963498

ABSTRACT

The genetics of an individual is a crucial factor in understanding the risk of developing the neurodegenerative disease amyotrophic lateral sclerosis (ALS). There is still a large proportion of the heritability of ALS, particularly in sporadic cases, to be understood. Among others, active transposable elements drive inter-individual variability, and in humans long interspersed element 1 (LINE1, L1), Alu and SINE-VNTR-Alu (SVA) retrotransposons are a source of polymorphic insertions in the population. We undertook a pilot study to characterise the landscape of non-reference retrotransposon insertion polymorphisms (non-ref RIPs) in 15 control and 15 ALS individuals' whole genomes from Project MinE, an international project to identify potential genetic causes of ALS. The combination of two bioinformatics tools (mobile element locator tool (MELT) and TEBreak) identified on average 1250 Alu, 232 L1 and 77 SVA non-ref RIPs per genome across the 30 analysed. Further PCR validation of individual polymorphic retrotransposon insertions showed a similar level of accuracy for MELT and TEBreak. Our preliminary study did not identify a specific RIP or a significant difference in the total number of non-ref RIPs in ALS compared to control genomes. The use of multiple bioinformatic tools improved the accuracy of non-ref RIP detection and our study highlights the potential importance of studying these elements further in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Humans , Long Interspersed Nucleotide Elements/genetics , Neurodegenerative Diseases/genetics , Pilot Projects , Retroelements/genetics , Whole Genome Sequencing
2.
Mol Brain ; 13(1): 154, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33187550

ABSTRACT

Long interspersed element-1 (LINE-1/L1) is the only autonomous transposable element in the human genome that currently mobilises in both germline and somatic tissues. Recent studies have identified correlations between altered retrotransposon expression and the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) in a subset of patients. The risk of an individual developing ALS is dependent on an interaction of genetic variants and subsequent modifiers during life. These modifiers could include environmental factors, which can lead to epigenetic and genomic changes, such as somatic mutations, occurring in the neuronal cells that degenerate as the disease develops. There are more than 1 million L1 copies in the human genome today, but only 80-100 L1 loci in the reference genome are considered to be retrotransposition-competent (RC) and an even smaller number of these RC-L1s loci are highly active. We hypothesise that RC-L1s could affect normal cellular function through their mutagenic potential conferred by their ability to retrotranspose in neuronal cells and through DNA damage caused by the endonuclease activity of the L1-encoded ORF2 protein. To investigate whether either an increase in the genomic burden of RC-L1s or epigenetic changes to RC-L1s altering their expression, could play a role in disease development, we chose a set of seven well characterised genomic RC-L1 loci that were reported earlier to be highly active in a cellular L1 retrotransposition reporter assay or serve as major source elements for germline and/or somatic retrotransposition events. Analysis of the insertion allele frequency of five polymorphic RC-L1s, out of the set of seven, for their presence or absence, did not identify an increased number individually or when combined in individuals with the disease. However, we did identify reduced levels of methylation of RC-L1s in the motor cortex of those individuals with both familial and sporadic ALS compared to control brains. The changes to the regulation of the loci encompassing these RC-L1s demonstrated tissue specificity and could be related to the disease process.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA Methylation/genetics , Genetic Loci , Long Interspersed Nucleotide Elements/genetics , Brain/metabolism , Brain/pathology , Case-Control Studies , Gene Frequency/genetics , Genomic Imprinting , Heterozygote , Humans , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , snRNP Core Proteins/genetics
3.
Int J Mol Sci ; 20(23)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783611

ABSTRACT

Retrotransposons can alter the regulation of genes both transcriptionally and post-transcriptionally, through mechanisms such as binding transcription factors and alternative splicing of transcripts. SINE-VNTR-Alu (SVA) retrotransposons are the most recently evolved class of retrotransposable elements, found solely in primates, including humans. SVAs are preferentially found at genic, high GC loci, and have been termed "mobile CpG islands". We hypothesise that the ability of SVAs to mobilise, and their non-random distribution across the genome, may result in differential regulation of certain pathways. We analysed SVA distribution patterns across the human reference genome and identified over-representation of SVAs at zinc finger gene clusters. Zinc finger proteins are able to bind to and repress SVA function through transcriptional and epigenetic mechanisms, and the interplay between SVAs and zinc fingers has been proposed as a major feature of genome evolution. We describe observations relating to the clustering patterns of both reference SVAs and polymorphic SVA insertions at zinc finger gene loci, suggesting that the evolution of this network may be ongoing in humans. Further, we propose a mechanism to direct future research and validation efforts, in which the interplay between zinc fingers and their epigenetic modulation of SVAs may regulate a network of zinc finger genes, with the potential for wider transcriptional consequences.


Subject(s)
Alu Elements/genetics , Genome, Human/genetics , Minisatellite Repeats/genetics , Retroelements/genetics , Epigenesis, Genetic/genetics , Evolution, Molecular , Humans , Transcription, Genetic/genetics , Zinc Fingers/genetics
4.
Curr Opin Psychol ; 27: 18-24, 2019 06.
Article in English | MEDLINE | ID: mdl-30099302

ABSTRACT

Over 98% of our genome is non-coding and is now recognised to have a major role in orchestrating the tissue specific and stimulus inducible gene expression pattern which underpins our wellbeing and mental health. The non-coding genome responds functionally to our environment at all levels, encompassing the span from psychological to physiological challenge. The gene expression pattern, termed the transcriptome, ultimately gives us our neurochemistry. Therefore a major modulator of mental wellbeing is how our genes are regulated in response to life experiences. Superimposed on the aforementioned non-coding DNA framework is a vast body of genetic variation in the elements that control response to challenges. These differences, termed polymorphisms, allow for a differential response from a specific DNA element to the same challenge thus potentially allowing 'individuality' in the modulation of our transcriptome. This review will focus on a fundamental mechanism defining our psychological and psychiatric wellbeing, namely how genetic variation can be correlated with differential gene expression in response to specific challenges, thus resulting in altered neurochemistry which consequently may shape behaviour.


Subject(s)
Genetic Variation , Genome/genetics , Humans , Mental Disorders/genetics , Polymorphism, Single Nucleotide
5.
J Neurol Neurosurg Psychiatry ; 90(3): 284-293, 2019 03.
Article in English | MEDLINE | ID: mdl-30305322

ABSTRACT

Endogenous retrotransposon sequences constitute approximately 42% of the human genome, and mobilisation of retrotransposons has resulted in rearrangements, duplications, deletions, novel transcripts and the introduction of new regulatory domains throughout the human genome. Both germline and somatic de novo retrotransposition events have been involved in a range of human diseases, and there is emerging evidence for the modulation of retrotransposon activity during the development of specific diseases. Particularly, there is unequivocal consensus that endogenous retrotransposition can occur in neuronal lineages. This review addresses our current knowledge of the different mechanisms through which retrotransposons might influence the development of and predisposition to amyotrophic lateral sclerosis.


Subject(s)
Amyotrophic Lateral Sclerosis/etiology , Retroelements/physiology , Humans
6.
Nucleic Acids Res ; 45(22): 12816-12833, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29112714

ABSTRACT

mRNA splicing and export plays a key role in the regulation of gene expression, with recent evidence suggesting an additional layer of regulation of gene expression and cellular function through the selective splicing and export of genes within specific pathways. Here we describe a role for the RNA processing factors THRAP3 and BCLAF1 in the regulation of the cellular DNA damage response (DDR) pathway, a key pathway involved in the maintenance of genomic stability and the prevention of oncogenic transformation. We show that loss of THRAP3 and/or BCLAF1 leads to sensitivity to DNA damaging agents, defective DNA repair and genomic instability. Additionally, we demonstrate that this phenotype can be at least partially explained by the role of THRAP3 and BCLAF1 in the selective mRNA splicing and export of transcripts encoding key DDR proteins, including the ATM kinase. Moreover, we show that cancer associated mutations within THRAP3 result in deregulated processing of THRAP3/BCLAF1-regulated transcripts and consequently defective DNA repair. Taken together, these results suggest that THRAP3 and BCLAF1 mutant tumors may be promising targets for DNA damaging chemotherapy.


Subject(s)
Active Transport, Cell Nucleus/genetics , DNA Damage , DNA-Binding Proteins/genetics , RNA Splicing , Repressor Proteins/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Gene Expression Profiling/methods , HEK293 Cells , Humans , In Situ Hybridization, Fluorescence , Microscopy, Fluorescence , Mutation , RNA Interference , Repressor Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
7.
J Affect Disord ; 172: 63-73, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25451397

ABSTRACT

BACKGROUND: The purpose of this study was to address the affects of mood modifying drugs on the transcriptome, in a tissue culture model, using qPCR arrays as a cost effective approach to identifying regulatory networks and pathways that might coordinate the cell response to a specific drug. METHODS: We addressed the gene expression profile of 90 plus genes associated with human mood disorders using the StellARray™ qPCR gene expression system in the human derived SH-SY5Y neuroblastoma cell line. RESULTS: Global Pattern Recognition (GPR) analysis identified a total of 9 genes (DRD3(⁎), FOS(†), JUN(⁎), GAD1(⁎†), NRG1(⁎), PAFAH1B3(⁎), PER3(⁎), RELN(⁎) and RGS4(⁎)) to be significantly regulated in response to cellular challenge with the mood stabilisers sodium valproate ((⁎)) and lithium ((†)). Modulation of FOS and JUN highlights the importance of the activator protein 1 (AP-1) transcription factor pathway in the cell response. Enrichment analysis of transcriptional networks relating to this gene set also identified the transcription factor neuron restrictive silencing factor (NRSF) and the oestrogen receptor as an important regulatory mechanism. LIMITATIONS: Cell line models offer a window of what might happen in vivo but have the benefit of being human derived and homogenous with regard to cell type. CONCLUSIONS: This data highlights transcription factor pathways, acting synergistically or separately, in the modulation of specific neuronal gene networks in response to mood stabilising drugs. This model can be utilised in the comparison of the action of multiple drug regimes or for initial screening purposes to inform optimal drug design.


Subject(s)
Antimanic Agents/pharmacology , Repressor Proteins/genetics , Transcriptome , Cell Line , Humans , Lithium Compounds/pharmacology , Reelin Protein , Valproic Acid/pharmacology
8.
PLoS One ; 9(6): e90833, 2014.
Article in English | MEDLINE | ID: mdl-24608899

ABSTRACT

Genetic mutations of FUS have been linked to many diseases including Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration. A primate specific and polymorphic retrotransposon of the SINE-VNTR-Alu (SVA) family is present upstream of the FUS gene. Here we have demonstrated that this retrotransposon can act as a classical transcriptional regulatory domain in the context of a reporter gene construct both in vitro in the human SK-N-AS neuroblastoma cell line and in vivo in a chick embryo model. We have also demonstrated that the SVA is composed of multiple distinct regulatory domains, one of which is a variable number tandem repeat (VNTR). The ability of the SVA and its component parts to direct reporter gene expression supported a hypothesis that this region could direct differential FUS expression in vivo. The SVA may therefore contribute to the modulation of FUS expression exhibited in and associated with neurological disorders including ALS where FUS regulation may be an important parameter in progression of the disease. As VNTRs are often clinical associates for disease progression we determined the extent of polymorphism within the SVA. In total 2 variants of the SVA were identified based within a central VNTR. Preliminary analysis addressed the association of these SVA variants within a small sporadic ALS cohort but did not reach statistical significance, although we did not include other parameters such as SNPs within the SVA or an environmental factor in this analysis. The latter may be particularly important as the transcriptional and epigenetic properties of the SVA are likely to be directed by the environment of the cell.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Promoter Regions, Genetic , RNA-Binding Protein FUS/genetics , Animals , Base Sequence , Case-Control Studies , Cell Line, Tumor , Chick Embryo , Genetic Association Studies , Humans , Minisatellite Repeats , Regulatory Elements, Transcriptional , Retroelements , Sequence Analysis, DNA , Transcription, Genetic
9.
Neuropeptides ; 47(6): 395-400, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24210140

ABSTRACT

The regulation of neuropeptide gene expression and their receptors in a tissue specific and stimulus inducible manner will determine in part behaviour and physiology. This can be a dynamic process resulting from short term changes in response to the environment or long term modulation imposed by epigenetically determined mechanisms established during life experiences. The latter underpins what is termed 'nature and nurture, or 'gene×environment interactions'. Dynamic gene expression of neuropeptides or their receptors is a key component of signalling in the CNS and their inappropriate regulation is therefore a predicted target underpinning psychiatric disorders and neuropathological processes. Finding the regulatory domains within our genome which have the potential to direct gene expression is a difficult challenge as 98% of our genome is non-coding and, with the exception of proximal promoter regions, such elements can be quite distant from the gene that they regulate. This review will deal with how we can find such domains by addressing both the most conserved non-exonic regions in the genome using comparative genomics and the most recent or constantly evolving DNA such as repetitive DNA or retrotransposons. We shall also explore how polymorphic changes in such domains can be associated with CNS disorders by altering the appropriate gene expression patterns which maintain normal physiology.


Subject(s)
Gene Expression Regulation , Neuropeptides/genetics , Polymorphism, Genetic , Animals , Humans , Mice , Promoter Regions, Genetic , Rats , Retroelements , Signal Transduction/physiology
10.
BMC Evol Biol ; 13: 101, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23692647

ABSTRACT

BACKGROUND: Retrotransposons are a major component of the human genome constituting as much as 45%. The hominid specific SINE-VNTR-Alus are the youngest of these elements constituting 0.13% of the genome; they are therefore a practical and amenable group for analysis of both their global integration, polymorphic variation and their potential contribution to modulation of genome regulation. RESULTS: Consistent with insertion into active chromatin we have determined that SVAs are more prevalent in genic regions compared to gene deserts. The consequence of which, is that their integration has greater potential to have affects on gene regulation. The sequences of SVAs show potential for the formation of secondary structure including G-quadruplex DNA. We have shown that the human specific SVA subtypes (E-F1) show the greatest potential for forming G-quadruplexes within the central tandem repeat component in addition to the 5' 'CCCTCT' hexamer. We undertook a detailed analysis of the PARK7 SVA D, located in the promoter of the PARK7 gene (also termed DJ-1), in a HapMap cohort where we identified 2 variable number tandem repeat domains and 1 tandem repeat within this SVA with the 5' CCCTCT element being one of the variable regions. Functionally we were able to demonstrate that this SVA contains multiple regulatory elements that support reporter gene expression in vitro and further show these elements exhibit orientation dependency. CONCLUSIONS: Our data supports the hypothesis that SVAs integrate preferentially in to open chromatin where they could modify the existing transcriptional regulatory domains or alter expression patterns by a variety of mechanisms.


Subject(s)
Gene Expression Regulation , Retroelements , Base Sequence , Cell Line , Genome, Human , Humans , Minisatellite Repeats , Molecular Sequence Data , Mutagenesis, Insertional , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...