Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Fungal Genet Biol ; 170: 103858, 2024 02.
Article in English | MEDLINE | ID: mdl-38101696

ABSTRACT

The chytrid fungus Batrachochytrium dendrobatidis (Bd) was discovered in 1998 as the cause of chytridiomycosis, an emerging infectious disease causing mass declines in amphibian populations worldwide. The rapid population declines of the 1970s-1990s were likely caused by the spread of a highly virulent lineage belonging to the Bd-GPL clade that was introduced to naïve susceptible populations. Multiple genetically distinct and regional lineages of Bd have since been isolated and sequenced, greatly expanding the known biological diversity within this fungal pathogen. To date, most Bd research has been restricted to the limited number of samples that could be isolated using culturing techniques, potentially causing a selection bias for strains that can grow on media and missing other unculturable or fastidious strains that are also present on amphibians. We thus attempted to characterize potentially non-culturable genetic lineages of Bd from distinct amphibian taxa using sequence capture technology on DNA extracted from host tissue and swabs. We focused our efforts on host taxa from two different regions that likely harbored distinct Bd clades: (1) wild-caught leopard frogs (Rana) from North America, and (2) a Japanese Giant Salamander (Andrias japonicus) at the Smithsonian Institution's National Zoological Park that exhibited signs of disease and tested positive for Bd using qPCR, but multiple attempts failed to isolate and culture the strain for physiological and genetic characterization. We successfully enriched for and sequenced thousands of fungal genes from both host clades, and Bd load was positively associated with number of recovered Bd sequences. Phylogenetic reconstruction placed all the Rana-derived strains in the Bd-GPL clade. In contrast, the A. japonicus strain fell within the Bd-Asia3 clade, expanding the range of this clade and generating additional genomic data to confirm its placement. The retrieved ITS locus matched public barcoding data from wild A. japonicus and Bd infections found on other amphibians in India and China, suggesting that this uncultured clade is widespread across Asia. Our study underscores the importance of recognizing and characterizing the hidden diversity of fastidious strains in order to reconstruct the spatiotemporal and evolutionary history of Bd. The success of the sequence capture approach highlights the utility of directly sequencing pathogen DNA from host tissue to characterize cryptic diversity that is missed by culture-reliant approaches.


Subject(s)
Chytridiomycota , Animals , Phylogeny , Chytridiomycota/genetics , Amphibians/genetics , Amphibians/microbiology , Biological Evolution , DNA
2.
J Anim Ecol ; 92(9): 1856-1868, 2023 09.
Article in English | MEDLINE | ID: mdl-37409362

ABSTRACT

Amphibians suffer from large-scale population declines globally, and emerging infectious diseases contribute heavily to these declines. Amphibian Perkinsea (Pr) is a worldwide anuran pathogen associated with mass mortality events, yet little is known about its epidemiological patterns, especially in comparison to the body of literature on amphibian chytridiomycosis and ranavirosis. Here, we establish Pr infection patterns in natural anuran populations and identify important covariates including climate, host attributes and co-infection with Ranavirus (Rv). We used quantitative (q)PCR to determine the presence and intensity of Pr and Rv across 1234 individuals sampled throughout central Florida in 2017-2019. We then implemented random forest ensemble learning models to predict infection with both pathogens based on physiological and environmental characteristics. Perkinsea infected 32% of all sampled anurans, and Pr prevalence was significantly elevated in Ranidae frogs, cooler months, metamorphosed individuals and frogs co-infected with Rv, while Pr intensity was significantly higher in ranid frogs and individuals collected dead. Ranavirus prevalence was 17% overall and was significantly higher in Ranidae frogs, metamorphosed individuals, locations with higher average temperatures, and individuals co-infected with Pr. Perkinsea prevalence was significantly higher than Rv prevalence across months, regions, life stages and species. Among locations, Pr prevalence was negatively associated with crayfish prevalence and positively associated with relative abundance of microhylids, but Rv prevalence did not associate with any tested co-variates. Co-infections were significantly more common than single infections for both pathogens, and we propose that Pr infections may propel Rv infections because seasonal Rv infection peaks followed Pr infection peaks and random forest models found Pr intensity was a leading factor explaining Rv infections. Our study elucidates epidemiological patterns of Pr in Florida and suggests that Pr may be under-recognized as a cause of anuran declines, especially in the context of pathogen co-infection.


Subject(s)
Coinfection , Ranavirus , Animals , Ranavirus/physiology , Florida , Ranidae , Climate
3.
J Evol Biol ; 36(6): 847-873, 2023 06.
Article in English | MEDLINE | ID: mdl-37255207

ABSTRACT

Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.


Subject(s)
Adaptive Immunity , Biological Evolution , Animals , Adaptive Immunity/genetics , Vertebrates/genetics , Evolution, Molecular , Immunity, Innate/genetics
4.
Biol Rev Camb Philos Soc ; 98(3): 727-746, 2023 06.
Article in English | MEDLINE | ID: mdl-36598050

ABSTRACT

Anthropogenic habitat disturbance is fundamentally altering patterns of disease transmission and immunity across the vertebrate tree of life. Most studies linking anthropogenic habitat change and disease focus on habitat loss and fragmentation, but these processes often lead to a third process that is equally important: habitat split. Defined as spatial separation between the multiple classes of natural habitat that many vertebrate species require to complete their life cycles, habitat split has been linked to population declines in vertebrates, e.g. amphibians breeding in lowland aquatic habitats and overwintering in fragments of upland terrestrial vegetation. Here, we link habitat split to enhanced disease risk in amphibians (i) by reviewing the biotic and abiotic forces shaping elements of immunity and (ii) through a spatially oriented field study focused on tropical frogs. We propose a framework to investigate mechanisms by which habitat split influences disease risk in amphibians, focusing on three broad host factors linked to immunity: (i) composition of symbiotic microbial communities, (ii) immunogenetic variation, and (iii) stress hormone levels. Our review highlights the potential for habitat split to contribute to host-associated microbiome dysbiosis, reductions in immunogenetic repertoire, and chronic stress, that often facilitate pathogenic infections and disease in amphibians and other classes of vertebrates. We highlight that targeted habitat-restoration strategies aiming to connect multiple classes of natural habitats (e.g. terrestrial-freshwater, terrestrial-marine, marine-freshwater) could enhance priming of the vertebrate immune system through repeated low-load exposure to enzootic pathogens and reduced stress-induced immunosuppression.


Subject(s)
Amphibians , Ecosystem , Animals , Anura , Life Cycle Stages
5.
Ecol Evol ; 12(11): e9426, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36329816

ABSTRACT

Regional genetic differentiation of mitochondrial lineages occurs in migratory species with natal philopatry such as sea turtles. However, early juvenile dispersal represents a key opportunity for gene flow and colonization of new regions through founder events, making it an important yet under-studied life stage. To assess connectivity among sea turtle life stages and ocean basins, we sequenced mitochondrial DNA (mtDNA) fragments from 35 juveniles sampled in the Gulf of Mexico from the rarely observed dispersal stage across three species: green turtles (Chelonia mydas; n = 30), hawksbills (Eretmochelys imbricata; n = 3), and loggerheads (Caretta caretta; n = 2). We estimated green turtle rookery contributions using a many-to-many Bayesian mixed stock analysis that incorporated dispersal probabilities based on rookery size and transport via ocean currents. We assembled a gene tree including 709 distinct mtDNA control region haplotypes from the literature for all seven extant sea turtle species to assess gaps in life-stage data across ocean basins, as well as contextualize the lineages we sampled from dispersing juveniles. Our results indicate a high likelihood that green turtles sampled in the Gulf of Mexico originated from rookeries along the coast of Mexico, with smaller contributions from Costa Rica and Suriname. The gene tree analysis yielded species-level relationships consistent with those presented previously, while intra-species relationships between lineages and ocean basins differed, particularly within loggerhead and green turtle clades. Our results highlight the lack of genetic data from juvenile sea turtles, especially the early dispersal stage, and the potential for these data to answer broader questions of connectivity and diversification across species and lineages.

6.
Integr Comp Biol ; 62(2): 191-198, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35687001

ABSTRACT

DNA metabarcoding describes the use of targeted DNA (i.e., amplicon) sequencing to identify community constituents from a complex sample containing genetic material from multiple organisms, such as water, soil, gut contents, microbiomes, or biofilms. This molecular approach for characterizing mixed DNA samples relies on the development of "universal primers" that allow for effective amplification of target sequences across a broad range of taxa. Armed with optimized lab protocols and rigorous bioinformatics tools, DNA metabarcoding can produce a wealth of information about the hidden biodiversity of various sample types by probing for organisms' molecular footprints. DNA metabarcoding has received considerable popular press over the last few years because of gut microbiome studies in humans and beyond. However, there are many other applications that are continually integrating molecular biology with other fields of study to address questions that have previously been unanswerable, for both prokaryotic and eukaryotic targets. For example, we can now sample mostly digested gut contents from virtually any organism to learn about ontogeny and foraging ecology. Water samples collected from different locations can be filtered to extract eDNA (i.e., environmental DNA), revealing the biodiversity of fish and other taxa targeted by carefully selected primer sets. This universal primer metabarcoding approach has even been extended to looking at diverse gene families within single species, which is particularly useful for complex immune system genetics. The purpose of this SICB symposium was to bring together researchers using DNA metabarcoding approaches to (a) showcase the diversity of applications of this technique for addressing questions spanning ecology, evolution, and physiology, and (b) to spark connections among investigators from different fields that are utilizing similar approaches to facilitate optimization and standardization of metabarcoding methods and analyses. The resulting manuscripts from this symposium represent a great diversity of metabarcoding applications and taxonomic groups of interest.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Animals , DNA/genetics , DNA Barcoding, Taxonomic/methods , Environmental Monitoring , Fishes/genetics , Humans , Water
7.
Integr Comp Biol ; 62(2): 262-274, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35588059

ABSTRACT

Maintenance of genetic diversity at adaptive loci may facilitate invasions by non-native species by allowing populations to adapt to novel environments, despite the loss of diversity at neutral loci that typically occurs during founder events. To evaluate this prediction, we compared genetic diversity at major histocompatibility complex (MHC) and cytochrome b (cytb) loci from 20 populations of the American bullfrog (Rana catesbeiana) across theinvasive and native ranges in North America and quantified the presence of the pathogen Batrachochytrium dendrobatidis (Bd). Compared to native populations, invasive populations had significantly higher Bd prevalence and intensity, significantly higher pairwise MHC and cytb FST, and significantly lower cytb diversity, but maintained similar levels of MHC diversity. The two most common MHC alleles (LiCA_B and Rapi_33) were associated with a significant decreased risk of Bd infection, and we detected positive selection acting on four peptide binding residues. Phylogenetic analysis suggested invasive populations likely arose from a single founding population in the American Midwest with a possible subsequent invasion in the northwest. Overall, our study suggests that the maintenance of diversity at adaptive loci may contribute to invasion success and highlights the importance of quantifying diversity at functional loci to assess the evolutionary potential of invasive populations.


Subject(s)
Mycoses , Alleles , Animals , Genetic Variation , Major Histocompatibility Complex , Mycoses/genetics , Mycoses/microbiology , Mycoses/veterinary , Phylogeny , Polymorphism, Genetic , Rana catesbeiana/genetics , Rana catesbeiana/microbiology , Selection, Genetic , United States
8.
R Soc Open Sci ; 9(2): 211190, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35154791

ABSTRACT

Characterizing polymorphism at the major histocompatibility complex (MHC) genes is key to understanding the vertebrate immune response to disease. Despite being globally afflicted by the infectious tumour disease fibropapillomatosis (FP), immunogenetic variation in sea turtles is minimally explored. We sequenced the α 1 peptide-binding region of MHC class I genes (162 bp) from 268 juvenile green (Chelonia mydas) and 88 loggerhead (Caretta caretta) sea turtles in Florida, USA. We recovered extensive variation (116 alleles) and trans-species polymorphism. Supertyping analysis uncovered three functional MHC supertypes corresponding to the three well-supported clades in the phylogeny. We found significant evidence of positive selection at seven amino acid sites in the class I exon. Random forest modelling and risk ratio analysis of Ch. mydas alleles uncovered one allele weakly associated with smooth FP tumour texture, which may be associated with disease outcome. Our study represents the first characterization of MHC class I diversity in Ch. mydas and the largest sample of sea turtles used to date in any study of adaptive genetic variation, revealing tremendous genetic variation and high adaptive potential to viral pathogen threats. The novel associations we identified between MHC diversity and FP outcomes in sea turtles further highlight the importance of evaluating genetic predictors of disease, including MHC and other functional markers.

9.
Ecohealth ; 18(4): 451-464, 2021 12.
Article in English | MEDLINE | ID: mdl-34894333

ABSTRACT

Three infectious pathogens Batrachochytrium dendrobatidis (Bd), Ranavirus (Rv) and Perkinsea (Pr) are associated with widespread and ongoing amphibian population declines. Although their geographic and host ranges vary widely, recent studies have suggested that the occurrence of these pathogens could be more common than previously thought, even in direct-developing terrestrial species traditionally considered less likely to harbor these largely aquatic pathogens. Here, we characterize Bd, Rv, and Pr infections in direct-developing terrestrial amphibians of the Pristimantis genus from the highland Ecuadorean Andes. We confirm the first detection of Pr in terrestrial-breeding amphibians and in the Andean region, present the first report of Rv in Ecuador, and we add to the handful of studies finding Bd infecting Pristimantis. Infection prevalence did not differ significantly among pathogens, but infection intensity was significantly higher for Bd compared to Pr. Neither prevalence nor intensity differed significantly across locality and elevation for Bd and Rv, although low prevalence in our dataset and lack of seasonal sampling could have prevented important epidemiological patterns from emerging. Our study highlights the importance of incorporating pathogen surveillance in biodiversity monitoring in the Andean region and serves as starting point to understand pathogen dynamics, transmission, and impacts in terrestrial-breeding frogs.


Subject(s)
Chytridiomycota , Ranavirus , Amphibians , Animals , Anura , Biodiversity , Plant Breeding
10.
Gene ; 800: 145800, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34175400

ABSTRACT

Emerging infectious diseases are a major threat to biodiversity in the 21st century. Fibropapillomatosis (FP) is an epithelial tumor disease that affects immature and adult marine turtles worldwide, particularly green turtles (Chelonia mydas). We know little about the host factors contributing to FP susceptibility, in part because transcriptomic studies that compare transcript expression in turtles with and without FP are lacking. Here, we performed RNA-Seq on healthy skin tissue from immature C. mydas in the Indian River Lagoon, Florida, USA, comparing turtles (1) with and without FP and (2) with and without leech parasites, a putative vector of FP. We assembled a de novo C. mydas skin transcriptome to identify transcripts with significant differential expression (DE) across FP and leech categories. Significant DE transcripts were found across FP and leech comparisons, including 10 of the same transcripts with DE across both comparisons. Leech-positive individuals significantly upregulated different immune and viral interaction transcripts than did leech-negative individuals, including viral interaction transcripts associated with herpesvirus interactions. This finding strengthens the role of marine leeches as mechanical vectors of Chelonid herpesvirus 5 (ChHV5) which has been implicated as a causative agent of FP. FP-positive turtles upregulated several tumor progression and suppression transcripts relative to FP-negative turtles, which had no significant DE tumor progression transcripts. FP-positive turtles also upregulated significantly more protein interaction transcripts than FP-negative turtles. DE transcripts across leech comparisons showed no functional enrichment, whereas DE transcripts across FP comparisons showed some GO terms were enriched in FP-positive and FP negative turtles. Notably, only FP-negative turtles were enriched for GO terms involved in acquired and inflammatory immune gene regulation. Overall, our DE transcripts included several candidate genes that may play important roles in C. mydas resistance to or recovery from FP, highlighting that transcriptomics provides a promising venue to understand this impactful disease. Continued investigation of C. mydas responses to FP and leech affliction is imperative for species persistence and the conservation of marine ecosystems worldwide due to the essential role of sea turtles in ecosystem function and stability.


Subject(s)
Skin Neoplasms/veterinary , Turtles/genetics , Turtles/parasitology , Animals , Florida , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Leeches/virology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transcriptome , Turtles/immunology , Turtles/virology
11.
Dis Aquat Organ ; 143: 1-12, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33443237

ABSTRACT

Fibropapillomatosis (FP) is a tumorous disease affecting all species of sea turtles and is associated with the pathogen chelonid alphaherpesvirus 5 (ChHV5). Hypothesized ChHV5 vectors include the marine leeches Ozobranchus branchiatus and O. margoi, but data on their associations with FP and ChHV5 are minimal. To establish relationships between leech parasitism, turtle hosts, and FP, we compared green and loggerhead turtles from the Indian River Lagoon (IRL), Florida, USA, in terms of (1) the presence or absence of ChHV5 within associated leeches, (2) the association between leech parasitism and host FP status, and (3) seasonal variation in leech presence. We identified 55 leeches collected from green turtles as O. branchiatus and 22 leeches collected from loggerhead turtles as O. margoi. Of 77 sequenced leeches, 10 O. branchiatus and 5 O. margoi were ChHV5 positive. ChHV5-positive O. branchiatus trended towards coming from FP-positive hosts. Using 12 yr of turtle capture data from the IRL, we found that leech parasitism was significantly correlated with FP and capture month in green turtles but not in loggerhead turtles. These results suggest that O. branchiatus and O. margoi may differ in their ability to transmit ChHV5 or to encounter and remain on FP-positive hosts. Alternatively, potential immunological differences between green and loggerhead turtles may explain the observed relationships. This study is the first to provide robust statistical evidence of an association between leeches and FP, as well as seasonal fluctuations in leech presence, in green turtles but not in loggerhead turtles.


Subject(s)
Herpesviridae Infections , Leeches , Turtles , Animals , Florida , Herpesviridae Infections/veterinary , Seasons
12.
Heredity (Edinb) ; 126(4): 640-655, 2021 04.
Article in English | MEDLINE | ID: mdl-33510466

ABSTRACT

Genetic diversity of major histocompatibility complex (MHC) genes is linked to reduced pathogen susceptibility in amphibians, but few studies also examine broad spatial and temporal patterns of MHC and neutral genetic diversity. Here, we characterized range-wide MHC diversity in the Northern leopard frog, Rana pipiens, a species found throughout North America that is experiencing disease-related declines. We used previously sequenced neutral markers (mitochondrial DNA and microsatellites), sequenced an expressed MHC class IIß gene fragment, and measured infection prevalence and intensity of the global fungal pathogen Batrachochytrium dendrobatidis (Bd) across 14 populations. Four populations were sampled across two decades, enabling temporal comparisons of selection and demography. We recovered 37 unique MHC alleles, including 17 that were shared across populations. Phylogenetic and population genetic patterns between MHC and neutral markers were incongruent, and five MHC codon positions associated with peptide binding were under positive selection. MHC heterozygosity, but not neutral marker heterozygosity, was a significant factor explaining spatial patterns of Bd prevalence, whereas only environmental variables predicted Bd intensity. MHC allelic richness (AR) decreased significantly over time but microsatellite-based AR did not, highlighting a loss of functional immunogenetic diversity that may be associated with Bd selective pressures. MHC supertype 4 was significantly associated with an elevated risk of Bd infection, whereas one supertype 2 allele was associated with a nearly significant reduced risk of Bd. Taken together, these results provide evidence that positive selection contributes to MHC class IIß evolution in R. pipiens and suggest that functional MHC differences across populations may contribute to disease adaptation.


Subject(s)
Anura , Major Histocompatibility Complex , Mycoses , Animals , Anura/genetics , Anura/microbiology , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Microsatellite Repeats , Mycoses/veterinary , Phylogeny
13.
Mol Ecol ; 29(15): 2889-2903, 2020 08.
Article in English | MEDLINE | ID: mdl-32700351

ABSTRACT

The disease chytridiomycosis caused by the fungus Bd has devastated amphibian populations worldwide. Functional genomic contributions to host susceptibility remain enigmatic and vary between species and populations. We conducted experimental Bd infections in Rana yavapaiensis, a species with intraspecific variation in chytridiomycosis susceptibility, to assess the skin and spleen transcriptomic response to infection over time. We predicted that increased immune gene expression would be associated with a positive disease outcome, but we instead found that surviving frogs had significantly reduced immune gene expression compared to susceptible frogs and to uninfected controls. MHC class IIß gene expression was also significantly higher in susceptible frogs compared to surviving frogs. Furthermore, susceptible frogs expressed a significantly larger number of distinct class IIß alleles, demonstrating a negative correlation between class IIß expression, functional diversity, and survival. Expression of the MHC class IIß locus previously associated with Bd disease outcomes was a significant predictor of Bd infection intensity at early infection stages but not at late infection stages, suggesting initial MHC-linked immune processes are important for ultimate disease outcomes. We infer through disease association and phylogenetic analysis that certain MHC variants are linked to the immune expression that was negatively associated with survival, and we hypothesize that frogs that did not express these alleles could better survive infections. Our study finds that MHC expression at early and late infection stages predicts Bd infection intensity, and suggests that generating a sustained immune response against Bd may be counterproductive for surviving chytridiomycosis in this partially susceptible species.


Subject(s)
Chytridiomycota , Mycoses , Animals , Anura/genetics , Chytridiomycota/genetics , Mycoses/genetics , Mycoses/veterinary , Phylogeny , Ranidae
14.
Zookeys ; 864: 111-146, 2019.
Article in English | MEDLINE | ID: mdl-31367179

ABSTRACT

In the genus Pristimantis, species are often combined into taxonomic units called species groups. The taxonomy of these groups is frequently inaccurate due to the absence of genetic data from type series and repeated misidentifications generated by high morphological resemblance between taxa. Here, we focus on the P.orestes species group, providing the first genetic assessment of P.orestes sensu stricto from individuals collected from the type locality, with a reviewed diagnosis and description of advertisement calls. We find that two lineages previously named P.orestes are genetically distinct and should be separated into two different species. Based on genetic and morphological data, we name one of these species P.cajanuma sp. nov. This new species is morphologically distinct from other members of the group by having shagreen dorsal skin, evident dorsolateral folds, broader discs on toes and fingers and pale gray ventral coloration. Additionally, P.saturninoi is placed within the P.orestes species group based on genetic data from its type series. However, we find that one of its paratypes is genetically distinct and belongs to a clade containing a new species we name P.quintanai sp. nov. This new species is morphologically distinguished by lacking a tympanic membrane and vocal sacs in males, and by having expanded discs on toes and fingers, finely tuberculated dorsal skin and irregular white or cream spots in the groin and concealed surfaces of thighs. Our findings highlight the importance of providing genetic characterization and placement from the type series in taxonomic challenging groups, such as Pristimantis. We also suggest that the diversity of species within the P.orestes group will increase as more sampling is achieved in the southern Andes of Ecuador.


ResumenLas especies pertenecientes al género Pristimantis usualmente están agrupadas en unidades taxonómicas llamadas grupos de especies. A menudo la taxonomía de estos grupos es problemática debido a la ausencia de información genética de las series tipo de las especies o debido a identificaciones erróneas generadas por la elevada similitud morfológica entre especies. Aquí nos enfocamos en el grupo de especies P.orestes y proveemos la primera evaluación genética de P.orestes sensu stricto en base a individuos colectados en la localidad tipo de la especie con una diagnosis revisada y descripción de vocalizaciones. Encontramos que dos linajes previamente nombrados como P.orestes son genéticamente distintos y deberían ser considerados como dos distintas especies. En base a evidencia genética y morfológica nombramos a una de estas especies P.cajanuma sp. nov. La nueva especie es distinta de otras especies del grupo por presentar piel dorsal con textura finamente granular, pliegues dorsolaterales evidentes, discos amplios en dedos de pie y manos y una coloración ventral gris pálido. Adicionalmente, P.saturninoi es colocada dentro del grupo de especies P.orestes en base a información genética de especímenes tipo. Sin embargo, encontramos que uno de los paratipos es genéticamente distinto y está dentro de un clado que incluye a una nueva especie morfológicamente similar que nombramos como P.quintanai sp. nov. Esta nueva especie se distingue de otros Pristimantis del grupo por carecer de una membrana timpánica diferenciada, machos sin sacos vocales y por presentar discos expandidos en los dedos de pies y manos, una piel dorsal con textura finamente tubercular y manchas irregulares blancas o crema-blanquecinas en las ingles y superficies ocultas de los muslos. Nuestros resultados resaltan la importancia de proveer caracterizaciones genéticas de especímenes tipos en grupos taxonómicamente complejos como los Pristimantis. Sugerimos que la diversidad de especies dentro del grupo de especies P.orestes incrementara a medida que más expediciones de campo se realicen en el sur de los Andes de Ecuador.

15.
Ecohealth ; 16(2): 222-234, 2019 06.
Article in English | MEDLINE | ID: mdl-31332577

ABSTRACT

Emerging infectious diseases threaten the survival of wildlife populations and species around the world. In particular, amphibians are experiencing population declines and species extinctions primarily in response to two pathogens, the fungus Batrachochytrium dendrobatidis (Bd) and the iridovirus Ranavirus (Rv). Here, we use field surveys and quantitative (q)PCR to compare infection intensity and prevalence of Bd and Rv across species and seasons on Jekyll Island, a barrier island off the coast of Georgia, USA. We collected oral and skin swabs for 1 year from four anuran species and three families, including two native hylids (Hyla cinerea and Hyla squirella), a native ranid (Rana sphenocephala), and the invasive rain frog Eleutherodactylus planirostris. Bd infection dynamics did not vary significantly over sampling months, but Rv prevalence and intensity were significantly higher in fall 2014 compared to spring 2015. Additionally, Rv prevalence and intensity were significantly higher in E. planirostris than in the other three species. Our study highlights the potential role of invasive amphibians as drivers of disease dynamics and demonstrates the importance of pathogen surveillance across multiple time periods and species to accurately capture the infectious disease landscape.


Subject(s)
Introduced Species , Ranidae/microbiology , Animals , Chytridiomycota , DNA Virus Infections/veterinary , Ecology , Georgia , Introduced Species/statistics & numerical data , Mycoses/veterinary , Ranavirus , Ranidae/virology
16.
Immunogenetics ; 71(4): 335-346, 2019 04.
Article in English | MEDLINE | ID: mdl-30761419

ABSTRACT

Infectious diseases are causing catastrophic losses to global biodiversity. Iridoviruses in the genus Ranavirus are among the leading causes of amphibian disease-related mortality. Polymorphisms in major histocompatibility complex (MHC) genes are significantly associated with variation in amphibian pathogen susceptibility. MHC genes encode two classes of polymorphic cell-surface molecules that can recognize and bind to diverse pathogen peptides. While MHC class I genes are the classic mediators of viral-acquired immunity, larval amphibians do not express them. Consequently, MHC class II gene diversity may be an important predictor of Ranavirus susceptibility in larval amphibians, the life stage most susceptible to Ranavirus. We surveyed natural populations of larval wood frogs (Rana sylvatica), which are highly susceptible to Ranavirus, across 17 ponds and 2 years in Maryland, USA. We sequenced the peptide-binding region of an expressed MHC class IIß locus and assessed allelic and genetic diversity. We converted alleles to functional supertypes and determined if supertypes or alleles influenced host responses to Ranavirus. Among 381 sampled individuals, 26% were infected with Ranavirus. We recovered 20 unique MHC class IIß alleles that fell into two deeply diverged clades and seven supertypes. MHC genotypes were associated with Ranavirus infection intensity, but not prevalence. Specifically, MHC heterozygotes and supertype ST1/ST7 had significantly lower Ranavirus infection intensity compared to homozygotes and other supertypes. We conclude that MHC class IIß functional genetic variation is an important component of Ranavirus susceptibility. Identifying immunogenetic signatures linked to variation in disease susceptibility can inform mitigation strategies for combatting global amphibian declines.


Subject(s)
Histocompatibility Antigens Class II/immunology , Polymorphism, Genetic , Ranavirus/immunology , Ranidae/immunology , Alleles , Animals , Gene Frequency , Genetic Predisposition to Disease/genetics , Histocompatibility Antigens Class II/classification , Histocompatibility Antigens Class II/genetics , Larva/genetics , Larva/immunology , Larva/virology , Maryland , Phylogeny , Ranavirus/physiology , Ranidae/genetics , Ranidae/virology
17.
Virology ; 521: 190-197, 2018 08.
Article in English | MEDLINE | ID: mdl-29960922

ABSTRACT

Chelonid Alphaherpesvirus 5 (ChHV5) has long been associated with fibropapillomatosis (FP) tumor disease in marine turtles. Presenting primarily in juvenile animals, FP results in fibromas of the skin, connective tissue, and internal organs, which may indirectly affect fitness by obstructing normal turtle processes. ChHV5 is near-universally present in tumorous tissues taken from affected animals, often at very high concentrations. However, there is also considerable asymptomatic carriage amongst healthy marine turtles, suggesting that asymptomatic hosts play an important role in disease ecology. Currently, there is a paucity of studies investigating variation in viral genetics between diseased and asymptomatic hosts, which could potentially explain why only some ChHV5 infections lead to tumor formation. Here, we generated a database containing DNA from over 400 tissue samples taken from green and loggerhead marine turtles, including multiple tissue types, a twenty year time span, and both diseased and asymptomatic animals. We used two molecular detection techniques, quantitative (q)PCR and nested PCR, to characterize the presence and genetic lineage of ChHV5 in each sample. We found that nested PCR across multiple loci out-performed qPCR and is a more powerful technique for determining infection status. Phylogenetic reconstruction of three viral loci from all ChHV5-positive samples indicated widespread panmixia of viral lineages, with samples taken across decades, species, disease states, and tissues all falling within the same evolutionary lineages. Haplotype networks produced similar results in that viral haplotypes were shared across species, tissue types and disease states with no evidence that viral lineages associated significantly with disease dynamics. Additionally, tests of selection on viral gene trees indicated signals of selection dividing major clades, though this selection did not divide sample categories. Based on these data, neither the presence of ChHV5 infection nor neutral genetic divergence between viral lineages infecting a juvenile marine turtle is sufficient to explain the development of FP within an individual.


Subject(s)
Evolution, Molecular , Fibroma/veterinary , Genotype , Herpesviridae Infections/veterinary , Herpesviridae/classification , Herpesviridae/genetics , Papilloma/veterinary , Animal Structures/virology , Animals , Fibroma/virology , Genetic Variation , Herpesviridae/isolation & purification , Herpesviridae Infections/virology , Papilloma/virology , Phylogeny , Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Turtles
18.
Dis Aquat Organ ; 129(2): 85-98, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29972369

ABSTRACT

Amphibians are suffering from large-scale population declines worldwide, and infectious diseases are a central driving force. Most pathogen-mediated declines are attributed to 2 pathogens, the fungus Batrachochytrium dendrobatidis and iridoviruses in the genus Ranavirus. However, another emerging pathogen within Perkinsea is associated with mass mortality events in anurans throughout the southeastern USA. Molecular resources for detecting amphibian Perkinsea have been limited to general protistan primers that amplify a range of organisms, not all of which are disease agents. Moreover, the only quantitative method available involves histopathology, which is labor intensive, requires destructive sampling, and lacks sensitivity. Here, we developed a novel quantitative (q)PCR assay that is sensitive and specific for amphibian Perkinsea, providing a resource for rapid and reliable pathogen diagnosis. We used histopathology to confirm that qPCR burdens track the severity of Perkinsea infections across multiple anuran tissues. We also sampled 3 natural amphibian communities in Florida, USA, to assess the prevalence and intensity of amphibian Perkinsea infections across species, seasons, tissues, and life stages. Anurans from 2 of 3 sampling locations were infected, totaling 25.1% of all individuals. Infection prevalence varied significantly among locations, seasons, species, and life stages. Infection intensity was significantly higher in larval tissues than adult tissues, and was significantly different across locations, seasons, and species. Understanding relationships between amphibian Perkinsea infection, other pathogens, and biotic and abiotic cofactors will allow us to assess what drives population declines, improving our ability to develop conservation strategies for susceptible species to reduce global amphibian biodiversity loss.


Subject(s)
Alveolata/physiology , Amphibians/parasitology , Polymerase Chain Reaction/methods , Seasons , Animals , Florida
19.
PLoS One ; 12(10): e0186066, 2017.
Article in English | MEDLINE | ID: mdl-28973040

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0175843.].

20.
Genome Announc ; 5(39)2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28963224

ABSTRACT

We report here the draft genome sequence of a novel Xenophilus species cultured from the skin of a southern leopard frog (Rana sphenocephala). Compared to previously sequenced bacterial genomes, our novel isolate showed the most significant homology with Xenophilus azovorans The assembled genome is 3,978,285 bp, with 3,704 predicted genes and one predicted plasmid.

SELECTION OF CITATIONS
SEARCH DETAIL
...