Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
NMR Biomed ; : e5117, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38356104

ABSTRACT

It has been shown using proton magnetic resonance spectroscopy (1 H MRS) that, in a group of females, whole-body insulin resistance was more closely related to accumulation of saturated intramyocellular lipid (IMCL) than to IMCL concentration alone. This has not been investigated in males. We investigated whether age- and body mass index-matched healthy males differ from the previously reported females in IMCL composition (measured as CH2 :CH3 ) and IMCL concentration (measured as CH3 ), and in their associations with insulin resistance. We ask whether saturated IMCL accumulation is more strongly associated with insulin resistance than other ectopic and adipose tissue lipid pools and remains a significant predictor when these other pools are taken into account. In this group of males, who had similar overall insulin sensitivity to the females, IMCL was similar between sexes. The males demonstrated similar and even stronger associations of IMCL with insulin resistance, supporting the idea that a marker reflecting the accumulation of saturated IMCL is more strongly associated with whole-body insulin resistance than IMCL concentration alone. However, this marker ceased to be a significant predictor of whole-body insulin resistance after consideration of other lipid pools, which implies that this measure carries no more information in practice than the other predictors we found, such as intrahepatic lipid and visceral adipose tissue. As the marker of saturated IMCL accumulation appears to be related to these two predictors and has a much smaller dynamic range, this finding does not rule out a role for it in the pathogenesis of insulin resistance.

2.
FEBS Lett ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38016936

ABSTRACT

Proteins which associate with the surface of lipid droplets are intimately involved in the regulation of the droplets. Several human inherited disorders have now been linked to loss- and, in some cases, likely gain-of-function mutations in the genes encoding these proteins. These are summarised in this Graphical Review.

3.
Cell Rep ; 42(2): 112107, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36800289

ABSTRACT

Lipid droplets (LDs) are intracellular organelles responsible for storing surplus energy as neutral lipids. Their size and number vary enormously. In white adipocytes, LDs can reach 100 µm in diameter, occupying >90% of the cell. Cidec, which is strictly required for the formation of large LDs, is concentrated at interfaces between adjacent LDs and facilitates directional flux of neutral lipids from the smaller to the larger LD. The mechanism of lipid transfer is unclear, in part because the architecture of interfaces between LDs remains elusive. Here we visualize interfaces between LDs by electron cryo-tomography and analyze the kinetics of lipid transfer by quantitative live fluorescence microscopy. We show that transfer occurs through closely apposed monolayers, is slowed down by increasing the distance between the monolayers, and follows exponential kinetics. Our data corroborate the notion that Cidec facilitates pressure-driven transfer of neutral lipids through two "leaky" monolayers between LDs.


Subject(s)
Lipid Droplets , Proteins , Lipid Droplets/metabolism , Proteins/metabolism , Lipids , Lipid Metabolism
4.
Elife ; 122023 02 01.
Article in English | MEDLINE | ID: mdl-36722855

ABSTRACT

Mitochondrial dysfunction has been reported in obesity and insulin resistance, but primary genetic mitochondrial dysfunction is generally not associated with these, arguing against a straightforward causal relationship. A rare exception, recently identified in humans, is a syndrome of lower body adipose loss, leptin-deficient severe upper body adipose overgrowth, and insulin resistance caused by the p.Arg707Trp mutation in MFN2, encoding mitofusin 2. How the resulting selective form of mitochondrial dysfunction leads to tissue- and adipose depot-specific growth abnormalities and systemic biochemical perturbation is unknown. To address this, Mfn2R707W/R707W knock-in mice were generated and phenotyped on chow and high fat diets. Electron microscopy revealed adipose-specific mitochondrial morphological abnormalities. Oxidative phosphorylation measured in isolated mitochondria was unperturbed, but the cellular integrated stress response was activated in adipose tissue. Fat mass and distribution, body weight, and systemic glucose and lipid metabolism were unchanged, however serum leptin and adiponectin concentrations, and their secretion from adipose explants were reduced. Pharmacological induction of the integrated stress response in wild-type adipocytes also reduced secretion of leptin and adiponectin, suggesting an explanation for the in vivo findings. These data suggest that the p.Arg707Trp MFN2 mutation selectively perturbs mitochondrial morphology and activates the integrated stress response in adipose tissue. In mice, this does not disrupt most adipocyte functions or systemic metabolism, whereas in humans it is associated with pathological adipose remodelling and metabolic disease. In both species, disproportionate effects on leptin secretion may relate to cell autonomous induction of the integrated stress response.


Subject(s)
Insulin Resistance , Lipodystrophy , Humans , Animals , Mice , Leptin/metabolism , Adiponectin/metabolism , Adipose Tissue/metabolism , Obesity/metabolism , Hydrolases/metabolism , Lipodystrophy/genetics , Lipodystrophy/metabolism , Mitochondria/metabolism
6.
Ann Endocrinol (Paris) ; 83(6): 461-468, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36206842

ABSTRACT

Lipodystrophy syndromes are rare diseases with defects in the development or maintenance of adipose tissue, frequently leading to severe metabolic complications. They may be genetic or acquired, with variable clinical forms, and are largely underdiagnosed. The European Consortium of Lipodystrophies, ECLip, is a fully functional non-profit network of European centers of excellence working in the field of lipodystrophies. It provides a favorable environment to promote large Europe-wide and international collaborations to increase the basic scientific understanding and clinical management of these diseases. It works with patient advocacy groups to increase public awareness. The network also promotes a European Patient Registry of lipodystrophies, as a collaborative research platform for consortium members. The annual congress organized gives an update of the findings of network research groups, highlighting clinical and fundamental aspects. The talks presented during the meeting in Cambridge, UK, in 2022 are summarized in these minutes.


Subject(s)
Lipodystrophy , Humans , Adipose Tissue , Lipodystrophy/therapy , Lipodystrophy/genetics , Syndrome , United Kingdom
7.
PLoS One ; 17(10): e0274867, 2022.
Article in English | MEDLINE | ID: mdl-36227936

ABSTRACT

Lipoedema is a chronic adipose tissue disorder mainly affecting women, causing excess subcutaneous fat deposition on the lower limbs with pain and tenderness. There is often a family history of lipoedema, suggesting a genetic origin, but the contribution of genetics is currently unclear. A tightly phenotyped cohort of 200 lipoedema patients was recruited from two UK specialist clinics. Objective clinical characteristics and measures of quality of life data were obtained. In an attempt to understand the genetic architecture of the disease better, genome-wide single nucleotide polymorphism (SNP) genotype data were obtained, and a genome wide association study (GWAS) was performed on 130 of the recruits. The analysis revealed genetic loci suggestively associated with the lipoedema phenotype, with further support provided by an independent cohort taken from the 100,000 Genomes Project. The top SNP rs1409440 (ORmeta ≈ 2.01, Pmeta ≈ 4 x 10-6) is located upstream of LHFPL6, which is thought to be involved with lipoma formation. Exactly how this relates to lipoedema is not yet understood. This first GWAS of a UK lipoedema cohort has identified genetic regions of suggestive association with the disease. Further replication of these findings in different populations is warranted.


Subject(s)
Genome-Wide Association Study , Lipedema , Female , Genotype , Humans , Polymorphism, Single Nucleotide , Quality of Life , United Kingdom
8.
Mol Metab ; 65: 101589, 2022 11.
Article in English | MEDLINE | ID: mdl-36064109

ABSTRACT

OBJECTIVES: Obesity in humans and mice is associated with elevated levels of two hormones responsive to cellular stress, namely GDF15 and FGF21. Over-expression of each of these is associated with weight loss and beneficial metabolic changes but where they are secreted from and what they are required for physiologically in the context of overfeeding remains unclear. METHODS: Here we used tissue selective knockout mouse models and human transcriptomics to determine the source of circulating GDF15 in obesity. We then generated and characterized the metabolic phenotypes of GDF15/FGF21 double knockout mice. RESULTS: Circulating GDF15 and FGF21 are both largely derived from the liver, rather than adipose tissue or skeletal muscle, in obese states. Combined whole body deletion of FGF21 and GDF15 does not result in any additional weight gain in response to high fat feeding but it does result in significantly greater hepatic steatosis and insulin resistance than that seen in GDF15 single knockout mice. CONCLUSIONS: Collectively the data suggest that overfeeding activates a stress response in the liver which is the major source of systemic rises in GDF15 and FGF21. These hormones then activate pathways which reduce this metabolic stress.


Subject(s)
Fatty Liver , Insulin Resistance , Animals , Body Weight , Fatty Liver/genetics , Fatty Liver/metabolism , Fibroblast Growth Factors , Growth Differentiation Factor 15/genetics , Hormones , Humans , Insulin Resistance/genetics , Mice , Mice, Knockout , Obesity/genetics , Obesity/metabolism
9.
Clin Endocrinol (Oxf) ; 97(6): 755-762, 2022 12.
Article in English | MEDLINE | ID: mdl-35920656

ABSTRACT

CONTEXT: Familial partial lipodystrophy type 2 (FPLD2) results from autosomal dominant mutations in the LMNA gene, causing lack of subcutaneous fat deposition and excess ectopic fat accumulation, leading to metabolic complications and reduced life expectancy. The rarity of the condition means that the natural history of FPLD2 throughout childhood is not well understood. We report outcomes in a cohort of 12 (5M) children with a genetic diagnosis of FPLD2, under the care of the UK National Severe Insulin Resistance Service (NSIRS) which offers multidisciplinary input including dietetic, in addition to screening for comorbidities. OBJECTIVE: To describe the natural history of clinical, biochemical and radiological outcomes of children with FPLD2. DESIGN: A retrospective case note review of children with a genetic diagnosis of FPLD2 who had been seen in the paediatric NSIRS was performed. PATIENTS: Twelve (5M) individuals diagnosed with FPLD2 via genetic testing before age 18 and who attended the NSIRS clinic were included. MEASUREMENTS: Relationships between metabolic variables (HbA1c, triglycerides, fasting insulin, fasting glucose and alanine transaminase [ALT]) across time, from first visit to most recent, were explored using a multivariate model, adjusted for age and gender. The age of development of comorbidities was recorded. RESULTS: Three patients (all female) developed diabetes between 12 and 19 years and were treated with Metformin. One female has hypertrophic cardiomyopathy and four (1M) patients developed mild hepatic steatosis at a median [range] age of 14(12-15) years. Three (1M) patients reported mental health problems related to lipodystrophy. There was no relationship between biochemical results and age. Patients with diabetes had higher concentrations of ALT than patients who did not have diabetes, adjusted for age, gender and body mass index standard deviation scores. CONCLUSIONS: Despite dietetic input, some patients, more commonly females, developed comorbidities after the age of 10. The absence of relationships between biochemical results and age likely reflects a small cohort size. We propose that, while clinical review and dietetic support are beneficial for children with FPLD2, formal screening for comorbidities before age 10 may not be of benefit. Clinical input from an multidisciplinary team including dietician, psychologist and clinician should be offered after diagnosis.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Lipodystrophy, Familial Partial , Child , Humans , Female , Adolescent , Lipodystrophy, Familial Partial/genetics , Lipodystrophy, Familial Partial/metabolism , Retrospective Studies , Lamin Type A/genetics , Subcutaneous Fat/metabolism
10.
Clin Epigenetics ; 14(1): 39, 2022 03 12.
Article in English | MEDLINE | ID: mdl-35279219

ABSTRACT

BACKGROUND: This work is aimed at improving the understanding of cardiometabolic syndrome pathophysiology and its relationship with thrombosis by generating a multi-omic disease signature. METHODS/RESULTS: We combined classic plasma biochemistry and plasma biomarkers with the transcriptional and epigenetic characterisation of cell types involved in thrombosis, obtained from two extreme phenotype groups (morbidly obese and lipodystrophy) and lean individuals to identify the molecular mechanisms at play, highlighting patterns of abnormal activation in innate immune phagocytic cells. Our analyses showed that extreme phenotype groups could be distinguished from lean individuals, and from each other, across all data layers. The characterisation of the same obese group, 6 months after bariatric surgery, revealed the loss of the abnormal activation of innate immune cells previously observed. However, rather than reverting to the gene expression landscape of lean individuals, this occurred via the establishment of novel gene expression landscapes. NETosis and its control mechanisms emerge amongst the pathways that show an improvement after surgical intervention. CONCLUSIONS: We showed that the morbidly obese and lipodystrophy groups, despite some differences, shared a common cardiometabolic syndrome signature. We also showed that this could be used to discriminate, amongst the normal population, those individuals with a higher likelihood of presenting with the disease, even when not displaying the classic features.


Subject(s)
Lipodystrophy , Metabolic Syndrome , Obesity, Morbid , DNA Methylation , Epigenesis, Genetic , Humans , Metabolic Syndrome/genetics , Obesity, Morbid/surgery , Phenotype
11.
J Clin Endocrinol Metab ; 107(4): 1065-1077, 2022 03 24.
Article in English | MEDLINE | ID: mdl-34875679

ABSTRACT

CONTEXT: Biological and translational insights from large-scale, array-based genetic studies of fat distribution, a key determinant of metabolic health, have been limited by the difficulty in linking predominantly noncoding variants to specific gene targets. Rare coding variant analyses provide greater confidence that a specific gene is involved, but do not necessarily indicate whether gain or loss of function (LoF) would be of most therapeutic benefit. OBJECTIVE: This work aimed to identify genes/proteins involved in determining fat distribution. METHODS: We combined the power of genome-wide analysis of array-based rare, nonsynonymous variants in 450 562 individuals in the UK Biobank with exome-sequence-based rare LoF gene burden testing in 184 246 individuals. RESULTS: The data indicate that the LoF of 4 genes (PLIN1 [LoF variants, P = 5.86 × 10-7], INSR [LoF variants, P = 6.21 × 10-7], ACVR1C [LoF + moderate impact variants, P = 1.68 × 10-7; moderate impact variants, P = 4.57 × 10-7], and PDE3B [LoF variants, P = 1.41 × 10-6]) is associated with a beneficial effect on body mass index-adjusted waist-to-hip ratio and increased gluteofemoral fat mass, whereas LoF of PLIN4 (LoF variants, P = 5.86 × 10-7 adversely affects these parameters. Phenotypic follow-up suggests that LoF of PLIN1, PDE3B, and ACVR1C favorably affects metabolic phenotypes (eg, triglycerides [TGs] and high-density lipoprotein [HDL] cholesterol concentrations) and reduces the risk of cardiovascular disease, whereas PLIN4 LoF has adverse health consequences. INSR LoF is associated with lower TG and HDL levels but may increase the risk of type 2 diabetes. CONCLUSION: This study robustly implicates these genes in the regulation of fat distribution, providing new and in some cases somewhat counterintuitive insight into the potential consequences of targeting these molecules therapeutically.


Subject(s)
Diabetes Mellitus, Type 2 , Activin Receptors, Type I/genetics , Body Fat Distribution , Diabetes Mellitus, Type 2/genetics , Exome , Genetic Variation , Genome-Wide Association Study , Humans
13.
J Clin Endocrinol Metab ; 106(8): 2367-2383, 2021 07 13.
Article in English | MEDLINE | ID: mdl-33901270

ABSTRACT

CONTEXT: Insulin resistance (IR) is associated with polycystic ovaries and hyperandrogenism, but underpinning mechanisms are poorly understood and therapeutic options are limited. OBJECTIVE: To characterize hyperandrogenemia and ovarian pathology in primary severe IR (SIR), using IR of defined molecular etiology to interrogate disease mechanism. To extend evaluation of gonadotropin-releasing hormone (GnRH) analogue therapy in SIR. METHODS: Retrospective case note review in 2 SIR national referral centers. Female patients with SIR with documented serum total testosterone (TT) concentration. RESULTS: Among 185 patients with lipodystrophy, 65 with primary insulin signaling disorders, and 29 with idiopathic SIR, serum TT ranged from undetectable to 1562 ng/dL (54.2 nmol/L; median 40.3 ng/dL [1.40 nmol/L]; n = 279) and free testosterone (FT) from undetectable to 18.0 ng/dL (0.625 nmol/L; median 0.705 ng/dL [0.0244 nmol/L]; n = 233). Higher TT but not FT in the insulin signaling subgroup was attributable to higher serum sex hormone-binding globulin (SHBG) concentration. Insulin correlated positively with SHBG in the insulin signaling subgroup, but negatively in lipodystrophy. In 8/9 patients with available ovarian tissue, histology was consistent with polycystic ovary syndrome (PCOS). In 6/6 patients treated with GnRH analogue therapy, gonadotropin suppression improved hyperandrogenic symptoms and reduced serum TT irrespective of SIR etiology. CONCLUSION: SIR causes severe hyperandrogenemia and PCOS-like ovarian changes whether due to proximal insulin signaling or adipose development defects. A distinct relationship between IR and FT between the groups is mediated by SHBG. GnRH analogues are beneficial in a range of SIR subphenotypes.


Subject(s)
Fertility Agents, Female/therapeutic use , Gonadotropin-Releasing Hormone/analogs & derivatives , Hyperandrogenism/drug therapy , Insulin Resistance/physiology , Ovary/drug effects , Testosterone/blood , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Hyperandrogenism/metabolism , Infant , Insulin/blood , Lipodystrophy/drug therapy , Lipodystrophy/metabolism , Middle Aged , Ovary/metabolism , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Retrospective Studies , Sex Hormone-Binding Globulin , Young Adult
14.
Cell Rep ; 34(10): 108810, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33691105

ABSTRACT

Adipogenin (Adig) is an adipocyte-enriched transmembrane protein. Its expression is induced during adipogenesis in rodent cells, and a recent genome-wide association study associated body mass index (BMI)-adjusted leptin levels with the ADIG locus. In order to begin to understand the biological function of Adig, we studied adipogenesis in Adig-deficient cultured adipocytes and phenotyped Adig null (Adig-/-) mice. Data from Adig-deficient cells suggest that Adig is required for adipogenesis. In vivo, Adig-/- mice are leaner than wild-type mice when fed a high-fat diet and when crossed with Ob/Ob hyperphagic mice. In addition to the impact on fat mass accrual, Adig deficiency also reduces fat-mass-adjusted plasma leptin levels and impairs leptin secretion from adipose explants, suggesting an additional impact on the regulation of leptin secretion.


Subject(s)
Adipose Tissue/metabolism , Leptin/metabolism , Nuclear Proteins/genetics , Adipocytes/cytology , Adipocytes/metabolism , Adipogenesis , Adiponectin/genetics , Adiponectin/metabolism , Animals , Body Weight , Diet, High-Fat , Female , Glucose Tolerance Test , Leptin/blood , Leptin/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Nuclear Proteins/deficiency , Phenotype , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
15.
Physiol Rev ; 101(3): 907-993, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33356916

ABSTRACT

Lipodystrophies have been recognized since at least the nineteenth century and, despite their rarity, tended to attract considerable medical attention because of the severity and somewhat paradoxical nature of the associated metabolic disease that so closely mimics that of obesity. Within the last 20 yr most of the monogenic subtypes have been characterized, facilitating family genetic screening and earlier disease detection as well as providing important insights into adipocyte biology and the systemic consequences of impaired adipocyte function. Even more recently, compelling genetic studies have suggested that subtle partial lipodystrophy is likely to be a major factor in prevalent insulin-resistant type 2 diabetes mellitus (T2DM), justifying the longstanding interest in these disorders. This progress has also underpinned novel approaches to treatment that, in at least some patients, can be of considerable therapeutic benefit.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Dyslipidemias/metabolism , Lipodystrophy/metabolism , Obesity/metabolism , Animals , Humans , Insulin Resistance/physiology
17.
Orphanet J Rare Dis ; 15(1): 17, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941540

ABSTRACT

BACKGROUND: Lipodystrophy syndromes comprise a group of extremely rare and heterogeneous diseases characterized by a selective loss of adipose tissue in the absence of nutritional deprivation or catabolic state. Because of the rarity of each lipodystrophy subform, research in this area is difficult and international co-operation mandatory. Therefore, in 2016, the European Consortium of Lipodystrophies (ECLip) decided to create a registry for patients with lipodystrophy. RESULTS: The registry was build using the information technology Open Source Registry System for Rare Diseases in the EU (OSSE), an open-source software and toolbox. Lipodystrophy specific data forms were developed based on current knowledge of typical signs and symptoms of lipodystrophy. The platform complies with the new General Data Protection Regulation (EU) 2016/679 by ensuring patient pseudonymization, informational separation of powers, secure data storage and security of communication, user authentication, person specific access to data, and recording of access granted to any data. Inclusion criteria are all patients with any form of lipodystrophy (with the exception of HIV-associated lipodystrophy). So far 246 patients from nine centres (Amsterdam, Bologna, Izmir, Leipzig, Münster, Moscow, Pisa, Santiago de Compostela, Ulm) have been recruited. With the help from the six centres on the brink of recruitment (Cambridge, Lille, Nicosia, Paris, Porto, Rome) this number is expected to double within the next one or 2 years. CONCLUSIONS: A European registry for all patients with lipodystrophy will provide a platform for improved research in the area of lipodystrophy. All physicians from Europe and neighbouring countries caring for patients with lipodystrophy are invited to participate in the ECLip Registry. STUDY REGISTRATION: ClinicalTrials.gov (NCT03553420). Registered 14 March 2018, retrospectively registered.


Subject(s)
Lipodystrophy , Rare Diseases , Registries , Adipose Tissue , Humans , Software
18.
Nature ; 578(7795): 444-448, 2020 02.
Article in English | MEDLINE | ID: mdl-31875646

ABSTRACT

Metformin, the world's most prescribed anti-diabetic drug, is also effective in preventing type 2 diabetes in people at high risk1,2. More than 60% of this effect is attributable to the ability of metformin to lower body weight in a sustained manner3. The molecular mechanisms by which metformin lowers body weight are unknown. Here we show-in two independent randomized controlled clinical trials-that metformin increases circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15), which has been shown to reduce food intake and lower body weight through a brain-stem-restricted receptor. In wild-type mice, oral metformin increased circulating GDF15, with GDF15 expression increasing predominantly in the distal intestine and the kidney. Metformin prevented weight gain in response to a high-fat diet in wild-type mice but not in mice lacking GDF15 or its receptor GDNF family receptor α-like (GFRAL). In obese mice on a high-fat diet, the effects of metformin to reduce body weight were reversed by a GFRAL-antagonist antibody. Metformin had effects on both energy intake and energy expenditure that were dependent on GDF15, but retained its ability to lower circulating glucose levels in the absence of GDF15 activity. In summary, metformin elevates circulating levels of GDF15, which is necessary to obtain its beneficial effects on energy balance and body weight, major contributors to its action as a chemopreventive agent.


Subject(s)
Body Weight/drug effects , Energy Metabolism/drug effects , Growth Differentiation Factor 15/metabolism , Metformin/pharmacology , Administration, Oral , Adult , Aged , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Diet, High-Fat , Double-Blind Method , Energy Intake/drug effects , Enterocytes/cytology , Enterocytes/drug effects , Female , Glial Cell Line-Derived Neurotrophic Factor Receptors/antagonists & inhibitors , Glial Cell Line-Derived Neurotrophic Factor Receptors/deficiency , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Growth Differentiation Factor 15/blood , Growth Differentiation Factor 15/deficiency , Growth Differentiation Factor 15/genetics , Homeostasis/drug effects , Humans , Intestines/cytology , Intestines/drug effects , Male , Metformin/administration & dosage , Mice , Mice, Obese , Middle Aged , Weight Loss/drug effects
19.
J Clin Endocrinol Metab ; 104(12): 6025-6032, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31504636

ABSTRACT

CONTEXT: Heterozygous frameshift variants in PLIN1 encoding perilipin-1, a key protein for lipid droplet formation and triglyceride metabolism, have been implicated in familial partial lipodystrophy type 4 (FPLD4), a rare entity with only six families reported worldwide. The pathogenicity of other PLIN1 null variants identified in patients with diabetes and/or hyperinsulinemia was recently questioned because of the absence of lipodystrophy in these individuals and the elevated frequency of PLIN1 null variants in the general population. OBJECTIVES: To reevaluate the pathogenicity of PLIN1 frameshift variants owing to new data obtained in the largest series of patients with FPLD4. METHODS: We performed histological and molecular studies for patients referred to our French National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity for lipodystrophy and/or insulin resistance and carrying PLIN1 frameshift variants. RESULTS: We identified two heterozygous PLIN1 frameshift variants segregating with the phenotype in nine patients from four unrelated families. The FPLD4 stereotypical signs included postpubertal partial lipoatrophy of variable severity, muscular hypertrophy, acromegaloid features, polycystic ovary syndrome and/or hirsutism, metabolic complications (e.g., hypertriglyceridemia, liver steatosis, insulin resistance, diabetes), and disorganized subcutaneous fat lobules with fibrosis and macrophage infiltration. CONCLUSIONS: These data suggest that some FPLD4-associated PLIN1 variants are deleterious. Thus, the evidence for the pathogenicity of each variant ought to be carefully considered before genetic counseling, especially given the importance of an early diagnosis for optimal disease management. Thus, we recommend detailed familial investigation, adipose tissue-focused examination, and follow-up of metabolic evolution.


Subject(s)
Lipodystrophy, Familial Partial/diagnosis , Lipodystrophy, Familial Partial/genetics , Perilipin-1/genetics , Adult , Aged , DNA Mutational Analysis , Diagnosis, Differential , Family , Female , Frameshift Mutation/physiology , Humans , Insulin Resistance/genetics , Male , Middle Aged , Molecular Diagnostic Techniques , Pedigree , Phenotype , Sequence Analysis, DNA , Young Adult
20.
J Clin Invest ; 129(10): 4009-4021, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31380809

ABSTRACT

Lipodystrophies are the result of a range of inherited and acquired causes, but all are characterized by perturbations in white adipose tissue function and, in many instances, its mass or distribution. Though patients are often nonobese, they typically manifest a severe form of the metabolic syndrome, highlighting the importance of white fat in the "safe" storage of surplus energy. Understanding the molecular pathophysiology of congenital lipodystrophies has yielded useful insights into the biology of adipocytes and informed therapeutic strategies. More recently, genome-wide association studies focused on insulin resistance have linked common variants to genes implicated in adipose biology and suggested that subtle forms of lipodystrophy contribute to cardiometabolic disease risk at a population level. These observations underpin the use of aligned treatment strategies in insulin-resistant obese and lipodystrophic patients, the major goal being to alleviate the energetic burden on adipose tissue.


Subject(s)
Adipocytes , Adipose Tissue, White , Lipodystrophy , Metabolic Syndrome , Obesity , Adipocytes/metabolism , Adipocytes/pathology , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Humans , Lipodystrophy/genetics , Lipodystrophy/metabolism , Lipodystrophy/pathology , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Obesity/genetics , Obesity/metabolism , Obesity/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...