Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2304040, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734871

ABSTRACT

Nanoparticle physicochemical properties have received great attention in optimizing the performance of nanoparticles for biomedical applications. For example, surface functionalization with small molecules or linear hydrophilic polymers is commonly used to tune the interaction of nanoparticles with proteins and cells. However, it is challenging to control the location of functional groups within the shell for conventional nanoparticles. Nanoparticle surfaces composed of shape-persistent bottlebrush polymers allow hierarchical control over the nanoparticle shell but the effect of the bottlebrush backbone on biological interactions is still unknown. The synthesis is reported of novel heterobifunctional poly(ethylene glycol) (PEG)-norbornene macromonomers modified with various small molecules to form bottlebrush polymers with different backbone chemistries. It is demonstrated that micellar nanoparticles composed of poly(lactic acid) (PLA)-PEG bottlebrush block copolymer (BBCP) with neutral and cationic backbone modifications exhibit significantly reduced cellular uptake compared to conventional unmodified BBCPs. Furthermore, the nanoparticles display long blood circulation half-lives of ≈22 hours and enhanced tumor accumulation in mice. Overall, this work sheds light on the importance of the bottlebrush polymer backbone and provides a strategy to improve the performance of nanoparticles in biomedical applications.

2.
Hypertension ; 81(1): 34-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37732479

ABSTRACT

Dementia affects almost 50 million adults worldwide, and remains a major cause of death and disability. Hypertension is a leading risk factor for dementia, including Alzheimer disease and Alzheimer disease-related dementias. Although this association is well-established, the mechanisms underlying hypertension-induced cognitive decline remain poorly understood. By exploring the mechanisms mediating the detrimental effects of hypertension on the brain, studies have aimed to provide therapeutic insights and strategies on how to protect the brain from the effects of blood pressure elevation. In this review, we focus on the basic mechanisms contributing to the cerebrovascular adaptions to elevated blood pressure and hypertension-induced microvascular injury. We also assess the cellular mechanisms of neurovascular unit dysfunction, focusing on the premise that cognitive impairment ensues when the dynamic metabolic demands of neurons are not met due to neurovascular uncoupling, and summarize cognitive deficits across various rodent models of hypertension as a resource for investigators. Despite significant advances in antihypertensive therapy, hypertension remains a critical risk factor for cognitive decline, and several questions remain about the development and progression of hypertension-induced cognitive impairment.


Subject(s)
Alzheimer Disease , Brain Injuries , Cognitive Dysfunction , Hypertension , Humans , Cognitive Dysfunction/etiology , Brain/metabolism
3.
Front Oncol ; 12: 959630, 2022.
Article in English | MEDLINE | ID: mdl-36387245

ABSTRACT

Ninety percent of deaths from cancer are caused by metastasis. miRNAs are critical players in biological processes such as proliferation, metastasis, apoptosis, and self-renewal. We and others have previously demonstrated that miRNA-10b promotes metastatic cell migration and invasion. Importantly, we also showed that miR-10b is a critical driver of metastatic cell viability and proliferation. To treat established metastases by inhibiting miR-10b, we utilized a therapeutic, termed MN-anti-miR10b, composed of anti-miR-10b antagomirs, conjugated to iron oxide nanoparticles, that serve as delivery vehicles to tumor cells in vivo and a magnetic resonance imaging (MRI) reporter. In our previous studies using murine models of metastatic breast cancer, we demonstrated the effectiveness of MN-anti-miR10b in preventing and eliminating existing metastases. With an outlook toward clinical translation of our therapeutic, here we report studies in large animals (companion cats) with spontaneous feline mammary carcinoma (FMC). We first investigated the expression and tissue localization of miR-10b in feline tumors and metastases and showed remarkable similarity to these features in humans. Next, in the first case study involving this therapeutic we intravenously dosed an FMC patient with MN-anti-miR10b and demonstrated its delivery to the metastatic lesions using MRI. We also showed the initial safety profile of the therapeutic and demonstrated significant change in miR-10b expression and its target HOXD10 after dosing. Our results provide support for using companion animals for further MN-anti-miR10b development as a therapy and serve as a guide for future clinical trials in human patients.

4.
Nano Today ; 362021 Feb.
Article in English | MEDLINE | ID: mdl-33552231

ABSTRACT

Near infrared (NIR) photodynamic activation is playing increasingly critical roles in cutting-edge anti-cancer nanomedicines, which include spatiotemporal control over induction of therapy, photodynamic priming, and phototriggered immunotherapy. Molecular targeted photonanomedicines (mt-PNMs) are tumor-specific nanoscale drug delivery systems, which capitalize on the unparalleled spatio-temporal precision of NIR photodynamic activation to augment the accuracy of tumor tissue treatment. mt-PNMs are emerging as a paradigm approach for the targeted treatment of solid tumors, yet remain highly complex and multifaceted. While ligand targeted nanomedicines in general suffer from interdependent challenges in biophysics, surface chemistry and nanotechnology, mt-PNMs provide distinct opportunities to synergistically potentiate the effects of ligand targeting. This review provides what we believe to be a much-need demarcation between the processes involved in tumor specificity (biomolecular recognition events) and tumor selectivity (preferential tumor accumulation) of ligand targeted nanomedicines, such as mt-PNMs, and elaborate on what NIR photodynamic activation has to offer. We discuss the interplay between both tumor specificity and tumor selectivity and the degree to which both may play central roles in cutting-edge NIR photoactivable nanotechnologies. A special emphasis is made on NIR photoactivable biomimetic nanotechnologies that capitalize on both specificity and selectivity phenomena to augment the safety and efficacy of photodynamic anti-tumor regimens.

SELECTION OF CITATIONS
SEARCH DETAIL
...