Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cancer Control ; 31: 10732748241250189, 2024.
Article in English | MEDLINE | ID: mdl-38797949

ABSTRACT

OBJECTIVES: CpG ODN is a Toll-like receptor 9 agonist with immunotherapeutic potential for many cancer types, including aggressive breast cancers. There is strong interest in utilizing CpG ODN as an adjuvant to improve clinical efficacy of current treatments and immunogenicity of breast cancers not traditionally responsive to active immunotherapy, such as those that are human epidermal growth factor receptor 2 (HER2)-positive. This study aimed to study the efficacy and safety of combination CpG ODN plus anti-HER2 antibody trastuzumab treatment in patients with advanced/metastatic breast cancer. METHODS: This single-arm, open-label phase II clinical trial treated patients (n = 6) with advanced/metastatic HER2-positive breast cancer with weekly subcutaneous CpG ODN and trastuzumab. Patients may have received any number of prior therapies to be enrolled (most enrolled at median 1 prior line of chemotherapy). Peripheral blood was collected at baseline and weeks 2, 6, 12, and 18 for immune analyses. Six patients were enrolled and 50% achieved stable disease (SD) response. RESULTS: Median PFS was 8.3 months. Three of the six patients enrolled opted to stop treatment due to tolerability issues. Multiplex assay for cytokine measurements revealed significantly higher VEGF-D levels at week 2 compared to baseline. Peripheral blood mononuclear cells analyzed by flow cytometry showed a significant increase in monocytic MDSC between weeks 6 and 12. Patients with progressive disease tended to have higher levels of week 6 monocytic MDSC and PD-1+ T cells than patients with SD. NK cell populations did not significantly change throughout treatment. CONCLUSIONS: CpG ODN and trastuzumab treatment of metastatic HER2 + breast cancer was safe but was not tolerable for all patients. This combination did induce potentially predictive immune profile changes in treated patients with metastatic HER2 + breast cancer, the significance of which needs to be further explored.


Why was the study done? Breast cancer that has metastasized (moved outside of the breast and local lymph nodes) is currently considered incurable and can be difficult to treat. Treatments that can stimulate the immune system to recognize cancer cells have been found to be useful for many types of cancers, including some types of breast cancers. This study tested a new immune stimulator (CpG ODN) in combination with a currently on-the-market antibody treatment for breast cancer (trastuzumab). What did the researchers do? The research team enrolled patients who had metastatic breast cancer and treated them all with a combination of trastuzumab and CpG ODN for 12 weeks. These patients were monitored for any side effects/toxicity, monitored for how long their breast cancer responded to this treatment, and monitored for how long they lived after beginning this treatment. Patients also had their blood drawn at different time points to observe how their immune cells and immune proteins (e.g. cytokines) changed on treatment. What did the researchers find? The research team enrolled six patients and found that the treatment was safe and that 50% of the patients treated did not have any breast cancer growth when given CpG ODN plus trastuzumab. Looking at the immune cells in the patient blood samples, some cells that are known to decrease the immune response to cancers (myeloid-derived suppressor cells) did increase towards the end of treatment. What do the findings mean? Overall, CpG ODN and trastuzumab treatment was found to be safe and potentially effective in preventing breast cancer growth.


Subject(s)
Breast Neoplasms , Oligodeoxyribonucleotides , Receptor, ErbB-2 , Trastuzumab , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/therapeutic use , Trastuzumab/therapeutic use , Trastuzumab/administration & dosage , Receptor, ErbB-2/metabolism , Middle Aged , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged
2.
Mol Cancer Res ; 22(3): 308-321, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38015751

ABSTRACT

Myeloid-derived suppressor cell (MDSC) levels are elevated in patients with cancer and contribute to reduced efficacy of immune checkpoint therapy. MDSC express Bruton's tyrosine kinase (BTK) and BTK inhibition with ibrutinib, an FDA-approved irreversible inhibitor of BTK, leads to reduced MDSC expansion/function in mice and significantly improves the antitumor activity of anti-PD-1 antibody treatments. Single-cell RNA sequencing (scRNA-seq) was used to characterize the effect of ibrutinib on gene expression of fluorescence-activated cell sorting-enriched MDSC from patients with different cancer types [breast, melanoma, head and neck squamous cell cancer (HNSCC)]. Melanoma patient MDSC were treated in vitro for 4 hours with 5 µmol/L ibrutinib or DMSO, processed for scRNA-seq using the Chromium 10× Genomics platform, and analyzed via the Seurat v4 standard integrative workflow. Baseline gene expression of MDSC from patients with breast, melanoma, and HNSCC cancer revealed similarities among the top expressed genes. In vitro ibrutinib treatment of MDSC from patients with melanoma resulted in significant changes in gene expression. GBP1, IL-1ß, and CXCL8 were among the top downregulated genes whereas RGS2 and ABHD5 were among the top upregulated genes (P < 0.001). Double positive CD14+CD15+ MDSC and PMN-MDSC responded similarly to BTK inhibition and exhibited more pronounced gene changes compared with early MDSC and M-MDSC. Pathway analysis revealed significantly downregulated pathways including TREM1, nitric oxide signaling, and IL-6 signaling (P < 0.004). IMPLICATIONS: scRNA-seq revealed characteristic gene expression patterns for MDSC from different patients with cancer and BTK inhibition led to the downregulation of multiple genes and pathways important to MDSC function and migration.


Subject(s)
Head and Neck Neoplasms , Melanoma , Myeloid-Derived Suppressor Cells , Animals , Humans , Mice , 1-Acylglycerol-3-Phosphate O-Acyltransferase , Agammaglobulinaemia Tyrosine Kinase , Single-Cell Gene Expression Analysis , Squamous Cell Carcinoma of Head and Neck
3.
Cancer Immunol Immunother ; 72(11): 3461-3474, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37528320

ABSTRACT

Myeloid-derived suppressor cells (MDSC) have been linked to loss of immune effector cell function through a variety of mechanisms such as the generation of reactive oxygen and nitrogen species and the production of inhibitory cytokines. Our group has shown that signaling through Bruton's tyrosine kinase (BTK) is important for MDSC function. Ibrutinib is an orally administered targeted agent that inhibits BTK activation and is currently used for the treatment of B cell malignancies. Using a syngeneic murine model of melanoma, the effect of BTK inhibition with ibrutinib on the therapeutic response to systemic PD-L1 blockade was studied. BTK was expressed by murine MDSC and their activation was inhibited by ibrutinib. Ibrutinib was not directly cytotoxic to cancer cells in vitro, but it inhibited BTK activation in MDSC and reduced expression of inducible nitric oxide synthase (NOS2) and production of nitric oxide. Ibrutinib treatments decreased the levels of circulating MDSC in vivo and increased the therapeutic efficacy of anti-PD-L1 antibody treatment. Gene expression profiling showed that ibrutinib decreased Cybb (NOX2) signaling, and increased IL-17 signaling (upregulating downstream targets Mmp9, Ptgs2, and S100a8). These results suggest that further exploration of MDSC inhibition could enhance the immunotherapy of advanced melanoma.PrécisInhibition of Bruton's tyrosine kinase, a key enzyme in myeloid cellular function, improves therapeutic response to an anti-PD-L1 antibody in an otherwise fairly resistant murine melanoma model.


Subject(s)
Antineoplastic Agents , Melanoma , Myeloid-Derived Suppressor Cells , Humans , Mice , Animals , Agammaglobulinaemia Tyrosine Kinase/metabolism , Protein-Tyrosine Kinases , Myeloid-Derived Suppressor Cells/metabolism , B7-H1 Antigen , Immunotherapy , Antineoplastic Agents/therapeutic use , Melanoma/drug therapy
4.
ACS Pharmacol Transl Sci ; 6(5): 738-747, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37200815

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that expand dramatically in many cancer patients. This expansion contributes to immunosuppression in cancer and reduces the efficacy of immune-based cancer therapies. One mechanism of immunosuppression mediated by MDSCs involves production of the reactive nitrogen species peroxynitrite (PNT), where this strong oxidant inactivates immune effector cells through destructive nitration of tyrosine residues in immune signal transduction pathways. As an alternative to analysis of nitrotyrosines indirectly generated by PNT, we used an endoplasmic reticulum (ER)-targeted fluorescent sensor termed PS3 that allows direct detection of PNT produced by MDSCs. When the MDSC-like cell line MSC2 and primary MDSCs from mice and humans were treated with PS3 and antibody-opsonized TentaGel microspheres, phagocytosis of these beads led to production of PNT and generation of a highly fluorescent product. Using this method, we show that splenocytes from a EMT6 mouse model of cancer, but not normal control mice, produce high levels of PNT due to elevated numbers of granulocytic (PMN) MDSCs. Similarly, peripheral blood mononuclear cells (PBMCs) isolated from blood of human melanoma patients produced substantially higher levels of PNT than healthy human volunteers, coincident with higher peripheral MDSC levels. The kinase inhibitor dasatinib was found to potently block the production of PNT both by inhibiting phagocytosis in vitro and by reducing the number of granulocytic MDSCs in mice in vivo, providing a chemical tool to modulate the production of this reactive nitrogen species (RNS) in the tumor microenvironment.

5.
Clin Cancer Res ; 29(4): 731-741, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36255391

ABSTRACT

PURPOSE: Treatment options are limited in patients with metastatic neuroendocrine neoplasms (NEN). We present the results for a phase II trial of combination nivolumab and temozolomide in patients with advanced NEN along with results of immune changes in peripheral blood. PATIENTS AND METHODS: NCT03728361 is a nonrandomized, phase II study of nivolumab and temozolomide in patients with NEN. The primary endpoint was response rate using RECIST 1.1. Secondary endpoints included progression-free survival (PFS), overall survival (OS), and safety. Immune profiling was performed by mass cytometry to evaluate the effect on peripheral blood immune cell subsets. RESULTS: Among all 28 patients with NEN, the confirmed response rate was 9/28 [32.1%, 95% confidence interval (CI): 15.9-52.4]. Of 11 patients with lung NEN, the response rate was 64% (n = 7); there was a significant difference in responses by primary tumor location (lung vs. others, P = 0.020). The median PFS was 8.8 months (95% CI: 3.9-11.1 months), and median OS was 32.3 months (95% CI: 20.7-not reached months). Exploratory blood immune cell profiling revealed an increase in circulating CD8+ T cells (27.9% ± 13.4% vs. 31.7% ± 14.6%, P = 0.03) and a decrease in CD4+ T cells (59.6% ± 13.1% vs. 56.5% ± 13.0%, P = 0.001) after 2 weeks of treatment. LAG-3-expressing total T cells were lower in patients experiencing a partial response (0.18% ± 0.24% vs. 0.83% ± 0.55%, P = 0.028). Myeloid-derived suppressor cell levels increased during the study and did not correlate with response. CONCLUSIONS: Combination nivolumab and temozolomide demonstrated promising activity in NEN. See related commentary by Velez and Garon, p. 691.


Subject(s)
Lung Neoplasms , Neuroendocrine Tumors , Humans , Nivolumab/therapeutic use , Temozolomide/therapeutic use , Lung Neoplasms/drug therapy , Neuroendocrine Tumors/drug therapy , Progression-Free Survival
6.
Front Immunol ; 12: 740890, 2021.
Article in English | MEDLINE | ID: mdl-34712230

ABSTRACT

Introduction: Myeloid-derived suppressor cells (MDSC) are a subset of immature myeloid cells that inhibit anti-tumor immunity and contribute to immune therapy resistance. MDSC populations were measured in melanoma patients receiving immune checkpoint inhibitors (ICI). Methods: Patients with melanoma (n=128) provided blood samples at baseline (BL), and before cycles 2 and 3 (BC2, BC3). Peripheral blood mononuclear cells (PBMC) were analyzed for MDSC (CD33+/CD11b+/HLA- DRlo/-) and MDSC subsets, monocytic (CD14+, M-MDSC), granulocytic (CD15+, PMN-MDSC), and early (CD14-/CD15-, E-MDSC) via flow cytometry. Statistical analysis employed unpaired and paired t-tests across and within patient cohorts. Results: Levels of MDSC as a percentage of PBMC increased during ICI (BL: 9.2 ± 1.0% to BC3: 23.6 ± 1.9%, p<0.0001), and patients who developed progressive disease (PD) had higher baseline MDSC. In patients who had a complete or partial response (CR, PR), total MDSC levels rose dramatically and plateaued (BL: 6.4 ± 1.4%, BC2: 26.2 ± 4.2%, BC3: 27.5 ± 4.4%; p<0.0001), whereas MDSC rose less sharply in PD patients (BL: 11.7 ± 2.1%, BC2: 18.3 ± 3.1%, BC3: 19.0 ± 3.2%; p=0.1952). Subset analysis showed that within the expanding MDSC population, PMN-MDSC and E-MDSC levels decreased, while the proportion of M-MDSC remained constant during ICI. In PD patients, the proportion of PMN-MDSC (as a percentage of total MDSC) decreased (BL: 25.1 ± 4.7%, BC2: 16.1 ± 5.2%, BC3: 8.6 ± 1.8%; p=0.0105), whereas a heretofore under-characterized CD14+/CD15+ double positive MDSC subpopulation increased significantly (BL: 8.7 ± 1.4% to BC3: 26.9 ± 4.9%; p=0.0425). Conclusions: MDSC levels initially increased significantly in responders. PMN-MDSC decreased and CD14+CD15+ MDSC increased significantly in PD patients. Changes in MDSC levels may have prognostic value in ICI.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Ipilimumab/therapeutic use , Melanoma/drug therapy , Myeloid-Derived Suppressor Cells/immunology , Nivolumab/therapeutic use , Skin Neoplasms/drug therapy , Adult , Aged , Cell Count , Female , Humans , Male , Middle Aged , Prospective Studies
8.
BMC Cancer ; 20(1): 445, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32429929

ABSTRACT

BACKGROUND: While combinations of immune checkpoint (ICP) inhibitors and neo-adjuvant chemotherapy (NAC) have begun testing in patients with breast cancer (BC), the effects of chemotherapy on ICP expression in circulating T cells and within the tumor microenvironment are still unclear. This information could help with the design of future clinical trials by permitting the selection of the most appropriate ICP inhibitors for incorporation into NAC. METHODS: Peripheral blood samples and/or tumor specimens before and after NAC were obtained from 24 women with operable BC. The expression of CTLA4, PD-1, Lag3, OX40, and Tim3 on circulating T lymphocytes before and at the end of NAC were measured using flow cytometry. Furthermore, using multi-color immunohistochemistry (IHC), the expression of immune checkpoint molecules by stromal tumor-infiltrating lymphocytes (TILs), CD8+ T cells, and tumor cells was determined before and after NAC. Differences in the percentage of CD4+ and CD8+ T cells expressing various checkpoint receptors were determined by a paired Student's t-test. RESULTS: This analysis showed decreased ICP expression by circulating CD4+ T cells after NAC, including significant decreases in CTLA4, Lag3, OX40, and PD-1 (all p values < 0.01). In comparison, circulating CD8+ T cells showed a significant increase in CTLA4, Lag3, and OX40 (all p values < 0.01). Within tumor samples, TILs, CD8+ T cells, and PD-L1/PD-1 expression decreased after NAC. Additionally, fewer tumor specimens were considered to be PD-L1/PD-1 positive post-NAC as compared to pre-NAC biopsy samples using a cutoff of 1% expression. CONCLUSIONS: This work revealed that NAC treatment can substantially downregulate CD4+ and upregulate CD8+ T cell ICP expression as well as deplete the amount of TILs and CD8+ T cells found in breast tumor samples. These findings provide a starting point to study the biological significance of these changes in BC patients. TRIAL REGISTRATION: NCT04022616.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B7-H1 Antigen/metabolism , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoadjuvant Therapy/methods , Programmed Cell Death 1 Receptor/metabolism , Adult , Aged , B7-H1 Antigen/immunology , Biomarkers, Tumor/blood , Breast Neoplasms/blood , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Chemotherapy, Adjuvant , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Prognosis , Programmed Cell Death 1 Receptor/immunology , Tumor Microenvironment
10.
J Immunol ; 198(4): 1439-1451, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28087667

ABSTRACT

In the autoimmune disease multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), expansion of pathogenic, myelin-specific Th1 cell populations drives active disease; selectively targeting this process may be the basis for a new therapeutic approach. Previous studies have hinted at a role for protein arginine methylation in immune responses, including T cell-mediated autoimmunity and EAE. However, a conclusive role for the protein arginine methyltransferase (PRMT) enzymes that catalyze these reactions has been lacking. PRMT5 is the main PRMT responsible for symmetric dimethylation of arginine residues of histones and other proteins. PRMT5 drives embryonic development and cancer, but its role in T cells, if any, has not been investigated. In this article, we show that PRMT5 is an important modulator of CD4+ T cell expansion. PRMT5 was transiently upregulated during maximal proliferation of mouse and human memory Th cells. PRMT5 expression was regulated upstream by the NF-κB pathway, and it promoted IL-2 production and proliferation. Blocking PRMT5 with novel, highly selective small molecule PRMT5 inhibitors severely blunted memory Th expansion, with preferential suppression of Th1 cells over Th2 cells. In vivo, PRMT5 blockade efficiently suppressed recall T cell responses and reduced inflammation in delayed-type hypersensitivity and clinical disease in EAE mouse models. These data implicate PRMT5 in the regulation of adaptive memory Th cell responses and suggest that PRMT5 inhibitors may be a novel therapeutic approach for T cell-mediated inflammatory disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Immunologic Memory , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/physiology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cytokines/immunology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/metabolism , Gene Expression Regulation , Humans , Inflammation , Interleukin-2/biosynthesis , Interleukin-2/immunology , Lymphocyte Activation , Methylation , Mice , NF-kappa B/immunology , Protein-Arginine N-Methyltransferases/genetics , Th1 Cells/immunology , Th2 Cells/immunology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...