Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 70(19): 7479-87, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16149774

ABSTRACT

[reaction: see text] A practical synthesis for the large-scale production of the new carbapenem antibiotic, [4R,5S,6S]-3-[[(3S,5S)-5-[[(3-Carboxyphenyl)amino]carbonyl]-3-pyrrolidinyl]thio]-6-[(1R)-1-hydroxyethyl]-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid monosodium salt (ertapenem sodium, 1), has been developed. The synthesis features the novel use of 1,1,3,3-tetramethylguanidine as base for the low-temperature reaction of a thiol, derived from trans-4-hydroxy-L-proline, with the carbapenem nucleus activated as the enol phosphate. Hydrogenolysis of a p-nitrobenzyl ester is effected using a palladium on carbon catalyst to give an overall yield for the two steps of 90%. The use of bicarbonate in the hydrogenolysis was key in providing protection of the pyrrolidine amine as the sodium carbamate improving both the performance of the reaction and the stability of the product. This discovery made processing at manufacturing scale possible. Experimental evidence for the formation of the sodium carbamate is provided. A remarkably expedient process for the simultaneous purification and concentration of the aqueous product stream relies on ion-pairing extraction for the removal of the water-soluble 1,1,3,3-tetramethylguanidine. Crystallization then affords 59-64% overall yield of the monosodium salt form of the product.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , beta-Lactams/chemical synthesis , Ertapenem
2.
J Org Chem ; 69(19): 6257-66, 2004 Sep 17.
Article in English | MEDLINE | ID: mdl-15357584

ABSTRACT

A practical, efficient synthesis of 1, a hepatitis C virus RNA replication inhibitor, is described. Starting with the inexpensive diacetone glucose, the 12-step synthesis features a novel stereoselective rearrangement to prepare the key crystalline furanose diol intermediate. This is followed by a highly selective glycosidation to couple the C-2 branched furanose epoxide with deazapurine.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/genetics , RNA, Viral/biosynthesis , Antiviral Agents/pharmacology , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...