Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(20): 11831-11836, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33988195

ABSTRACT

Nanoporous graphene is considered the next-generation material for reverse osmosis water desalination providing both high water permeability and almost complete salt rejection. The main problem with graphene is the difficulty of synthesizing membranes with a consistent subnanometer pore size distribution. A recently proposed solution involves processing as-grown graphene oxide (GO) monolayers via a mild temperature annealing pre-treatment causing GO functional groups to cluster into small oxidized islands. A following harsh thermal reduction process creates pores only in the small oxidized regions. However, a suitable relationship between the area of the GO islands and the pore dimension is still missing. Here, we study in detail the effects of such a thermal reduction process on the graphene oxide sheet by means of molecular dynamics simulations, particularly highlighting and analysing the process parameters affecting the final pore area. Besides proving that epoxides represent the most suitable functional group to induce carbon removal and, thus, pore generation in reduced GO, we find a twofold way to achieve control over the pore size: tuning the dimension and shape of the initial clustered GO areas or changing the harsh reduction process temperature. An accurate balance of these parameters consistently gives rise to targeted pore dimensions in graphene membranes.

2.
J Phys Chem Lett ; 10(23): 7492-7497, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31735028

ABSTRACT

Nanoporous graphene was proposed as an efficient material for reverse osmosis water desalination membranes because it allows water molecules to pass at high flux while rejecting hydrated salt ions. Nevertheless, from an experimental point of view it is still difficult to control the pore size. A scalable method to generate pores is urgently required for the diffusion of this technology. We propose, by theoretical calculations, an innovative and scalable strategy to better control the dimension of the pores in graphene-based membranes by reduction of single-layer graphene oxide (GO). The latter is first annealed at a controlled mild temperature to induce the aggregation of its randomly distributed oxygen-containing functional groups into small nanometric clusters. The layer then undergoes a high-temperature reducing treatment that causes the desorption of the functional groups along with carbon removal only in the oxidized areas, producing subnanometric pores while leaving unchanged the remaining pristine graphene areas.

3.
J Phys Chem Lett ; 9(7): 1746-1749, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29557654

ABSTRACT

Graphene oxide (GO) is a versatile 2D material whose properties can be tuned by changing the type and concentration of oxygen-containing functional groups attached to its surface. However, a detailed knowledge of the dependence of the chemo/physical features of this material on its chemical composition is largely unknown. We combine classical molecular dynamics and density functional theory simulations to predict the structural and electronic properties of GO at low degree of oxidation and suggest a revision of the Lerf-Klinowski model. We find that layer deformation is larger for samples containing high concentrations of epoxy groups and that correspondingly the band gap increases. Targeted chemical modification of the GO surface appears to be an effective route to tailor the electronic properties of the monolayer for given applications. Our simulations also show that the chemical shift of the C-1s XPS peak allows one to unambiguously characterize GO composition, resolving the peak attribution  uncertainty often encountered in experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...