Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(12): 15998-16008, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36940251

ABSTRACT

Star block copolymer electrolytes with a lithium-ion conducting phase are investigated in the present work to assess the influence of this complex architecture compared to that of the linear one, on both, bulk morphology and ionic conductivity. For that purpose, the controlled synthesis of a series of poly(styrene-co-benzyl methacrylate)-b-poly[oligo(ethylene glycol) methyl ether acrylate] [P(S-co-BzMA)-b-POEGA] block copolymers (BCPs) by reversible addition-fragmentation transfer polymerization was performed from either a monofunctional or a tetrafunctional chain transfer agent containing trithiocarbonate groups. We emphasized how a small amount of styrene (6 mol %) drastically improved the control of the RAFT polymerization of benzyl methacrylate mediated by the tetrafunctional chain transfer agent. Transmission electron microscopy and small-angle X-ray scattering demonstrated a clear segregation of the BCPs in the presence of lithium salt. Interestingly, the star BCPs gave rise to highly ordered lamellar structures as compared to that of the linear analogues. Consequently, the reduced lamellae tortuosity of self-assembled star BCPs improved the lithium conductivity by more than 8 times at 30 °C for ∼30 wt % of the POEGA conductive phase.

2.
Biomacromolecules ; 23(6): 2536-2551, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35640245

ABSTRACT

Biobased waterborne latexes were synthesized by miniemulsion radical copolymerization of a biosourced ß-myrcene (My) terpenic monomer and styrene (S). Biobased amphiphilic copolymers were designed to act as stabilizers of the initial monomer droplets and the polymer colloids dispersed in the water phase. Two types of hydrophilic polymer backbones were hydrophobically modified by terpene molecules to synthesize two series of amphiphilic copolymers with various degrees of substitution. The first series consists of poly(acrylic acid) modified with tetrahydrogeraniol moieties (PAA-g-THG) and the second series is based on the polysaccharide carboxymethylpullulan amino-functionalized with dihydromyrcenol moieties (CMP-g-(NH-DHM)). The produced waterborne latexes with diameters between 160 and 300 nm and were composed of polymers with varying glass transition temperatures (Tg, PMy = -60 °C, Tg, P(My-co-S) = -14 °C, Tg, PS = 105 °C) depending on the molar fraction of biobased ß-myrcene (fMy,0 = 0, 0.43, or 1). The latexes successfully stabilized dodecane-in-water and water-in-dodecane emulsions for months at all compositions. The waterborne latexes composed of low Tg poly(ß-myrcene) caused interesting different behavior during drying of the emulsions compared to polystyrene latexes.


Subject(s)
Latex , Polymers , Acyclic Monoterpenes , Alkenes , Emulsifying Agents , Emulsions , Excipients , Water
3.
J Colloid Interface Sci ; 581(Pt A): 96-101, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32771753

ABSTRACT

HYPOTHESIS: Hierarchically structured surfaces including sensitive materials presents the advantage to exalt wettability variation due to the combination of micro structure effect directed by Cassie Baxter and/or Wenzel behaviour which is tuned by the surface energy variation of sensitive polymer films. EXPERIMENTS: Herein is reported the synthesis and the hierarchical structuration of a pH sensitive diblock copolymer P(S-stat-MMA)-b-P4VP with a pH-sensitive Poly 4-vinylpyridine P4VP block. Applying the Breath Figure method casting (minute time scale process), this diblock copolymer allows to obtain a micro porous honeycomb film while a wall nano-structuration due to self-assembly of diblock copolymer is observed. FINDINGS: The pH-triggered wettability is studied and correlated with the morphology evolution of P4VP nano-domains investigated by AFM in a liquid cell. Indeed, a nano-dots to nano-rings/donuts transition is highlighted when decreasing the pH below the pKa of the P4VP. This nano "sea Anemone" shape transition induces the macroscopic changes of the wettability of a hierarchically self-organized honeycomb film, explained by the protonation of P4VP chains inducing electrostatic repulsion and then hydrophilic surface.

4.
RSC Adv ; 10(39): 23498-23502, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-35520329

ABSTRACT

The ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) using phosphorus pentoxide (P2O5) as a metal-free catalyst and isopropanol (iPrOH) as initiator resulted in the preparation of poly(ε-caprolactone) with narrow weight distribution. NMR spectroscopy analyses of the prepared PCL indicated the presence of the initiator residue at the end of the polymer chain, implying the occurrence of the ε-CL-catalysis ROP through a monomer activation mechanism. Kinetic experiments confirmed the controlled/living nature of ε-CL ring-opening catalyzed by phosphorus pentoxide. The commercial availability of phosphorus pentoxide and its easy-handling provide additional opportunities for polymer synthesis and nanocomposite manufacturing.

5.
Mater Sci Eng C Mater Biol Appl ; 104: 109871, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31499979

ABSTRACT

The present work investigates the potentiality of poly(N-vinyl caprolactam) (PVCL)-based thermoresponsive microgels decorated with cationic polymer brushes as drug delivery carriers. The effect of physico-chemical features of the colloids on cell viability response have to be carefully investigated to establish the range of suitable hydrodynamic diameters, crosslinking densities, lengths and ratios of the cationic polyelectrolyte shell which allow their efficient and effective use for cargo loading, transport and delivery. The colloidal stability of all cationic thermoresponsive microgels is maintained over several days of incubation at 37 °C in biological mimicking medium (Dulbecco's Modified Eagle's Medium supplemented with fetal bovine serum). The thin cationic polymer shell covalently anchored does not hinder the all range of microgels to be biocompatible while the higher cytotoxicity of the doxorubicin-loaded microgels on HeLa cells proves their anti-tumor activity. The core-shell PVCL drug delivery nanocarriers allow a sustained release of doxorubicin with a slightly higher viability of HeLa cells incubated in the presence of DOXO-loaded microgels compared to the free DOXO. The nature of the endocytosis pathway is investigated through a quantification of the extent of the cellular survival rate in the presence of various cellular uptake inhibitors. A clathrin-dependent internalization was observed.


Subject(s)
Caprolactam/analogs & derivatives , Drug Carriers/chemistry , Drug Delivery Systems , Microgels/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Temperature , Animals , Caprolactam/chemistry , Cations , Cell Death/drug effects , Cell Survival/drug effects , Colloids/chemistry , Doxorubicin/pharmacology , HeLa Cells , Humans , Hydrodynamics , Mice , RAW 264.7 Cells , Time Factors
6.
Macromol Rapid Commun ; 40(2): e1800329, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30066976

ABSTRACT

The design of photoactive polymer substrates producing singlet oxygen under visible light irradiation has great technological potential. Aqueous dispersion of novel photoactive core-shell particles was synthesized by surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization of n-butyl acrylate. The surface of the nanoparticles is directly decorated thanks to the polymerization-induced self-assembly process using a hydrophilic macromolecular chain transfer agent (macro-CTA) functionalized with the organic photosensitizer. The macro-CTA was synthesized by statistical copolymerization of acrylic acid and 2-Rose Bengal ethyl acrylate (RBEA) at 80 °C mediated with 4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid. Monitoring polymerization kinetics of RAFT polymerization highlights that increasing amount of RBEA induces retardation, still more pronounced when using the vinylbenzyl Rose Bengal comonomer. The present work provides insight into the quantum yield of singlet oxygen production in water (ΦΔ  = 0.2-0.6) for the three types of synthesized polymers (hydrophilic polymer, latex particles, and polymer film). The photoactive core-shell latex particles enabled the easy preparation of photoactive polymer film by simple casting.


Subject(s)
Chemistry Techniques, Synthetic/methods , Emulsions/chemistry , Latex/chemistry , Polymerization , Singlet Oxygen/chemistry , Acrylates/chemistry , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Latex/chemical synthesis , Models, Chemical , Molecular Structure , Particle Size
7.
Soft Matter ; 12(3): 790-7, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26528753

ABSTRACT

Nowadays, a challenge in the preparation of hierarchically ordered materials is the control of concomitant and interacting self-organization processes occurring in time at different length scales. In the present paper, the breath figure process is combined with block copolymer nano-phase segregation to elaborate hierarchically structured honeycomb porous films. Copolymer ordering, at the nanometer length scale, is observed and described in detail with respect to the array of pores of micrometer dimension, hence pointing out the structural interplays between both length-scales. The study is focused on two diblock copolymers made of polystyrene and poly(tert-butyl acrylate) (PS-b-PtBA) with compositions producing lamellae or hexagonal packing of cylinders at thermodynamical equilibrium. Transmission Electron Microscopy completed with Small and Ultra-Small Angle Scattering are performed to evidence the inner morphologies of the honeycomb. The structural data are discussed in the light of the honeycomb film formation process establishing the interest in using kinetically trapped block copolymer self-organization as an imprint to elucidate the complex breath figure process.

8.
Macromol Rapid Commun ; 36(1): 79-83, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25421103

ABSTRACT

This article reports a rational strategy for preparing smart oligo(ethylene glycol)-based hybrid microgels loaded with high content of homogeneously distributed preformed magnetic nanoparticles (NPs) (up to 33 wt%). The strategy is based on the synthesis of biocompatible multiresponsive microgels by precipitation copolymerization of di(ethylene glycol) methyl ether methacrylate, oligo(ethylene glycol) methyl ether methacrylate, methacrylic acid, and oligo(ethylene glycol)diac-rylate. An aqueous dispersion of preformed magnetic NPs is straightforwardly loaded into the microgels. Robust monodisperse thermoresponsive magnetic microgels are produced, exhibiting a constant value of the volume phase transition temperature whatever the NPs content. The homogeneous microstructure of the initial stimuli-responsive biocompatible microgels plays a crucial role for the design of unique well-defined ethylene glycol-based thermoresponsive hybrid microgels.


Subject(s)
Biocompatible Materials/chemistry , Metal Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Ferric Compounds/chemistry , Gels , Polymerization , Transition Temperature
9.
Biomacromolecules ; 15(1): 242-51, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24266718

ABSTRACT

The present work shows the synthesis of amphiphilic polymers based on the hydrophilic dextran and the hydrophobic terpenes as renewable resources. The first step concerns the synthesis of functional terpene molecules by thiol-ene addition chemistry involving amino or carboxylic acid thiols and dihydromyrcenol terpene. The terpene-modified polysaccharides were subsequently synthesized by coupling the functional terpenes with dextran. A reductive amination step produced terpene end-modified dextran with 94% of functionalization, while the esterification step produced three terpene-grafted dextrans with a number of terpene units per dextran of 1, 5, and 10. The amphiphilic renewable grafted polymers were tested as emulsifiers for the stabilization of liquid miniemulsion of terpene droplets dispersed in an aqueous phase. The average hydrodynamic diameter of the stable droplets was observed at about 330 nm.


Subject(s)
Biopolymers/chemistry , Dextrans/chemical synthesis , Hydrophobic and Hydrophilic Interactions , Terpenes/chemical synthesis , Biopolymers/metabolism , Dextrans/metabolism , Terpenes/metabolism
10.
Langmuir ; 29(32): 10264-71, 2013 Aug 13.
Article in English | MEDLINE | ID: mdl-23855310

ABSTRACT

Honeycomb-structured porous polymer films based on photosensitizer-grafted polystyrene are prepared through the breath figure process. Rose Bengal (RB) photosensitizer is first attached to a well-defined poly(styrene-stat-4-vinylbenzyl chloride) statistical copolymer, synthesized by nitroxide-mediated radical polymerization. The RB grafted poly(styrene-stat-4-vinylbenzyl chloride) (ca. 20,000 g mol(-1) molar mass, 1.2 dispersity) leads to porous polymer films, with a hexagonal pore pattern, while a simple mixture of poly(styrene-stat-4-vinylbenzyl chloride) and the insoluble RB photosensitizer produced unstructured, nonporous films. The RB-grafted honeycomb films, compared with the corresponding nonporous flat films, are more efficient for oxidation of organic molecules via singlet oxygen production at a liquid/solid interface. The oxidations of 1,5-dihydroxynaphthalene to juglone and α-terpinene to ascaridole are followed in ethanol in the presence of both types of films. Oxidation of the organic molecules is a factor 5 greater with honeycomb compared to the nonporous films. This gain is ascribed to two factors: the specific location of the polar photosensitizer at the film interface and the greater exchange surface, as revealed by fluorescence and scanning electron microscopies.


Subject(s)
Photosensitizing Agents/chemistry , Polystyrenes/chemistry , Rose Bengal/chemistry , Molecular Structure , Particle Size , Photochemical Processes , Polystyrenes/chemical synthesis , Porosity , Surface Properties
11.
Macromol Rapid Commun ; 32(14): 1072-6, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21681996

ABSTRACT

In the present manuscript, we have demonstrated that hierarchically structured smart porous polymer films based on honeycomb-patterned surface can be elaborated from PS-b-P4VP pH-responsive block copolymer using the breath figure process. Despite the fast film formation by a bottom-up process, the copolymer nanostructuration was observed inside the walls of the honeycomb porous film. Atomic force microscopy (AFM), small angle X-ray and neutron scattering (SAXS and SANS) measurements were used to reveal both the hexagonal arrays formed by the pores at the micrometer length scale and the hexagonal copolymer self-assembly at the nanometer length scale. Contact angle (CA) measurements were used to point out the reversible pH-responsive wettability character of the surface. The PS-b-P4VP honeycomb film shows a contact angle variation of 20° between pH 9 and pH 3. An increase of the roughness was obtained with the pincushions hexagonal array enhancing the pH responsiveness of the polymer film with a switching CA gap of 75° when pH tuned from pH 9 to pH 3. This work presents the first report on honeycomb porous and pincushion films exhibiting a reversible pH-responsive character.


Subject(s)
Nanostructures/chemistry , Polystyrenes/chemistry , Polyvinyls/chemistry , Hydrogen-Ion Concentration , Porosity , Surface Properties , Wettability
12.
ACS Appl Mater Interfaces ; 2(2): 434-42, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20356189

ABSTRACT

The free-radical dispersion polymerization of methyl acrylate (MA) in isododecane was carried out in the presence of a poly(2-ethylhexyl acrylate) macromolecular RAFT (reversible addition-fragmentation chain transfer) agent bearing a trithiocarbonate reactive group in the middle of the chain (P2EHA-TTC). The presence of the trithiocarbonate function was crucial for the synthesis of monodisperse colloidal poly(methyl acrylate) (PMA) particles stabilized by the P2EHA segments. The hydrodynamic diameters ranged from 100 to 300 nm, using particularly low amounts of the macro(RAFT agent) (1-6 wt % vs. MA) in dispersion polymerizations carried out at 20 wt % solids content. As shown by 2D liquid chromatography, P2EHA-b-PMA or P2EHA-b-PMA-b-P2EHA block copolymers formed in situ at the early stage of the dispersion polymerization due to the reversible transfer process and played the role of particle stabilizer. The glass-transition temperature of the derived polymer films was not affected by the low amount of the chosen macromolecular stabilizer and the mechanical properties were mainly those of PMA, which makes the technique very attractive for coating applications.

13.
Langmuir ; 24(22): 13132-7, 2008 Nov 18.
Article in English | MEDLINE | ID: mdl-18947208

ABSTRACT

Monodisperse spherical hollow nanoparticles of mesoporous silica featuring mesopores with a radial orientation in the silica shell were synthesized via a dual-templating method. Specifically designed polystyrene latexes with anionic or cationic surface charges acted as the core templates, while cetyltrimethylammonium bromide served as a co-template to structure the mesopore formation during tetraethoxysilane hydrolysis/condensation. The particles were well-separated and presented homogeneous mesoporous silica shells. Average particle diameters were less than 200 nm, and the particles displayed high values of specific surface area and pore volume. The shell thickness and the hollow core diameter could be tuned independently while the radial pore structure was preserved. A detailed analysis of the nitrogen adsorption-desorption isotherms proved that the central cavity was completely isolated from the external medium, that is, only accessible through the radial mesopores of the shell. Consequently, our particles gather the advantages of a well-defined structure, straight penetrating channels across the silica shell, and a high accessible porous volume of the central core. These properties make them far better candidates than simple mesoporous particles for any storage and/or controlled release applications.

14.
J Chromatogr A ; 1190(1-2): 215-23, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18378255

ABSTRACT

Size-exclusion chromatography (SEC) separates polymers by hydrodynamic volume (the universal calibration principle). Molecular weights can be determined using viscometry (relying on universal calibration) and light scattering (independent of universal calibration). In the case of complex branched polyacrylates with tetrahydrofuran as eluent, universal calibration is valid, although the separation in term of molecular weight is incomplete: a given elution slice contains a range of molecular weights, described in terms of a 'local polydispersity'. The local polydispersity index decreases when the number of branches per chain increases and complete separation is reached for highly branched chains.


Subject(s)
Chromatography, Gel/methods , Polymers/isolation & purification , Molecular Weight
15.
Soft Matter ; 2(3): 223-231, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-32646149

ABSTRACT

The simple, one step synthesis of aqueous suspensions of amphiphilic nanoparticles is presented. Those particles are prepared in the batch heterophase polymerization of styrene or -butyl acrylate, using a water-soluble poly(sodium acrylate) alkoxyamine macroinitiator. The nitroxide-mediated controlled growth of the hydrophobic block leads to the formation of poly(sodium acrylate)--polystyrene or poly(sodium acrylate)--poly(-butyl acrylate) amphiphilic diblock copolymers, able to self-assemble in water simultaneously to the growth step. When the diblock copolymers become strongly asymmetrical, with a short poly(sodium acrylate) block and a long hydrophobic one, the formed hairy nanoparticles are analogous to amphiphilic diblock copolymer crew-cut micelles.

16.
Langmuir ; 21(10): 4686-94, 2005 May 10.
Article in English | MEDLINE | ID: mdl-16032890

ABSTRACT

This paper reports on the preparation of poly(methyl methacrylate) (PMMA), poly(n-butyl acrylate) (PBA), and polystyrene (PS) brushes at the surface of conducting materials that were modified by the electrochemical reduction of a brominated aryl diazonium salt BF4-, +N2-C6H4-CH(CH3)-Br (D1). The grafted organic species -C6H4-CH(CH3)-Br was found to be very effective in initiating atom transfer radical polymerization (ATRP) of vinyl monomers. This novel approach combining diazonium salts and ATRP allowed PMMA, PBA, and PS brushes to be grown from the surface of iron electrodes. The polymer films were characterized in terms of their chemical structure by infrared reflection absorption spectroscopy and X-ray photoelectron spectroscopy. Atomic force microscopy studies indicated that the polymer brushes are densely packed. Contact angle measurements of water drops on PS and PMMA brushes were 88.1 +/- 2.0 and 70.3 +/- 2.1 degrees, respectively, which is consistent with the published wettability data for the corresponding polymer sheets.

17.
Langmuir ; 21(15): 6726-33, 2005 Jul 19.
Article in English | MEDLINE | ID: mdl-16008381

ABSTRACT

The miniemulsion polymerization of styrene has been carried out using two pH-responsive cationic diblock macromonomers as reactive stabilizers. As a comparison, the analogous nonpolymerizable cationic diblock copolymer was also investigated. Each of these three stabilizers based on 2-(diethylaminoethyl)methacrylate and quaternized 2-(dimethylaminoethyl)methacrylate residues were prepared via oxyanionic polymerization and had relatively low polydispersities. It was found that all three copolymers were grafted to the polystyrene latex particles, as judged by X-ray photoelectron spectroscopy, aqueous electrophoresis and FTIR spectroscopy studies. Kinetics studies and colloidal characteristics indicated poorer stabilization properties of the partially quaternized diblock macromonomer and electron microscopy confirmed that the latexes invariably had relatively broad particle size distributions.

18.
Chem Commun (Camb) ; (5): 614-6, 2005 Feb 07.
Article in English | MEDLINE | ID: mdl-15672153

ABSTRACT

Amphiphilic hairy nanoparticles are prepared in a one step, batch, heterogeneous polymerization of styrene or n-butyl acrylate, using a water-soluble poly(sodium acrylate) alkoxyamine macroinitiator based on the SG1 nitroxide.

SELECTION OF CITATIONS
SEARCH DETAIL
...