Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 275: 126093, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38615453

ABSTRACT

The essential utilization of rare earth elements (REEs) for the production of several electronic devices is making the demand for them being increased all the time. This extensive use of these elements has also increased concern about human and environmental health. Previous studies have shown that REE levels are higher in environmental samples near mining sites, and they are highly possible to be transferred to biota. In this study, REE levels were determined in environmental samples collected from three abandoned mining sites of bauxite (Gargano, Otranto, and Spinazzola) in the region of Puglia, Southern Italy. The samples were digested and analyzed by two different techniques, Total X-Ray Fluorescence (TXRF) and Inductively Coupled Plasma - Mass Spectroscopy (ICP-MS) to investigate which technique is the most suitable for analysis of the REE content in samples from abandoned mining sites of bauxite. Only 6 REEs could be detected by TXRF, while all REEs were detected in all the samples by ICP-MS. Spinazzola is the richest site and Ce the most abundant REE in all three regions. REE levels are correlated between the soil and biota samples in many cases, although the calculation of the bioconcentration factor showed that REEs are not bioaccumulative. ICP-MS seems to be a more suitable technique for analysis of the whole REE content in environmental samples from abandoned mining sites of bauxite.

2.
Molecules ; 28(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687014

ABSTRACT

In recent years, sewage treatment plants did not effectively remove emerging water pollutants, leaving potential threats to human health and the environment. Advanced oxidation processes (AOPs) have emerged as a promising technology for the treatment of contaminated wastewater, and the addition of catalysts such as heavy metals has been shown to enhance their effectiveness. This review focuses on the use of rare earth elements (REEs) as catalysts in the AOP process for the degradation of organic pollutants. Cerium and La are the most studied REEs, and their mechanism of action is based on the oxygen vacancies and REE ion concentration in the catalysts. Metal oxide surfaces improve the decomposition of hydrogen peroxide to form hydroxide species, which degrade the organics. The review discusses the targets of AOPs, including pharmaceuticals, dyes, and other molecules such as alkaloids, herbicides, and phenols. The current state-of-the-art advances of REEs-based AOPs, including Fenton-like oxidation and photocatalytic oxidation, are also discussed, with an emphasis on their catalytic performance and mechanism. Additionally, factors affecting water chemistry, such as pH, temperature, dissolved oxygen, inorganic species, and natural organic matter, are analyzed. REEs have great potential for enhancing the removal of dangerous organics from aqueous solutions, and further research is needed to explore the photoFenton-like activity of REEs and their ideal implementation for wastewater treatment.

3.
Toxins (Basel) ; 15(6)2023 06 20.
Article in English | MEDLINE | ID: mdl-37368705

ABSTRACT

Buffelgrass (Cenchrus ciliaris L.) is an invasive C4 perennial grass species that substantially reduces native plant diversity of the Sonoran Desert through fire promotion and resource competition. Broad-spectrum herbicides are essentially used for its control, but they have a negative environmental and ecological impact. Recently, phytotoxicity on C. ciliaris has been discovered for two metabolites produced in vitro by the phytopathogenic fungi Cochliobolus australiensis and Pyricularia grisea. They were identified as (10S,11S)-(-)-epi-pyriculol and radicinin and resulted in being potential candidates for the development of bioherbicides for buffelgrass biocontrol. They have already shown promising results, but their ecotoxicological profiles and degradability have been poorly investigated. In this study, ecotoxicological tests against representative organisms from aquatic ecosystems (Aliivibrio fischeri bacterium, Raphidocelis subcapitata alga, and Daphnia magna crustacean) revealed relatively low toxicity for these compounds, supporting further studies for their practical application. The stability of these metabolites in International Organization for Standardization (ISO) 8692:2012 culture medium under different temperatures and light conditions was also evaluated, revealing that 98.90% of radicinin degraded after 3 days in sunlight. Significant degradation percentages (59.51-73.82%) were also obtained at room temperature, 30 °C or under ultraviolet (254 nm) light exposure. On the other hand, (10S,11S)-epi-pyriculol showed more stability under all the aforementioned conditions (49.26-65.32%). The sunlight treatment was also shown to be most effective for the degradation of this metabolite. These results suggest that radicinin could provide rapid degradability when used in agrochemical formulations, whereas (10S,11S)-epi-pyriculol stands as a notably more stable compound.


Subject(s)
Cenchrus , Water Pollutants, Chemical , Cenchrus/chemistry , Ecosystem , Ecotoxicology
4.
Molecules ; 27(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36014525

ABSTRACT

Octocrylene is an organic sunscreen whose main action is to absorb UVB radiation and short UVA wavelengths; it is used in various cosmetic products in order to provide an adequate sun-protection factor or to protect the cosmetic formulations themselves from UV radiation. This filter is believed to be a possible endocrine disruptor and is also questioned due to its allergic and/or photoallergic potential. However, it continues to be widely used, and it has been found in various environments, not least those of swimming pools, where it is evidently released by consumers, to the point that it is now considered an emerging micropollutant. The present investigation presents the possible chemical fate of octocrylene in the typical chlorination conditions of wastewater or swimming pools. A total of 11 disinfection byproducts were identified, and 6 were identified for the first time, and separated by HPLC. These products were identified through careful mass spectrometry studies and 1D and 2D NMR experiments. A formation mechanism has been proposed that justifies the chemical structures of all of the compounds identified. The ecotoxicological assessment of octocrylene and their products was carried out by employing Phaeodactylum tricornutum, Brachionus plicatilis and Aliivibrio fischeri as bioindicators. The ecotoxicity results reveal that toxic byproducts might be generated during the oxidation process, increasing the potential risk to the marine environment.


Subject(s)
Cosmetics , Water Pollutants, Chemical , Acrylates , Disinfection , Halogenation , Sunscreening Agents/chemistry , Sunscreening Agents/toxicity , Ultraviolet Rays , Water Pollutants, Chemical/toxicity
5.
Water Environ Res ; 94(8): e10782, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36029154

ABSTRACT

The intensive human activities extensively contaminated water sources making its treatment a problem of paramount importance, especially with the increasing of global population and water scarcity. The application of natural coagulants has become a promising and environmentally friendly alternative to conventional ones. This study was aimed at evaluating the efficiency of four plant extracts namely Agave americana, Carpobrotus acinaciformis, Austrocylindropuntia subulate, and Senicio anteuphorbium as natural coagulants to remove Microcystis aeruginosa cyanobacterium from water. The effects of pH (4, 5, 6, 7, 8 9, and 10) and coagulant dose (5, 10, 15, 20, 25, and 30 mg/L) on the coagulation efficiency were investigated. Results showed that plant-based extracts exhibited high coagulant abilities significantly contributing to the removal of M. aeruginosa cells up to 80% on a case-by-case basis. The ecotoxicity (Daphnia magna, Aliivibrio fischeri, Raphidocelis subcapitata, and Sorghum saccharatum) was absent or presented very slight acute toxicity up to 12.5 mg/L being S. anteuphorbium the least toxic. PRACTITIONER POINTS: Nature-based plant extracts showed removal rates up to 80%. Lower pH and A. subulate and S. anteuphorbium were the most efficient coagulants Toxicity effects were plant extracts-based and dose function. A. subulate and S. anteuphorbium were the least toxic extracts.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Animals , Daphnia , Ecotoxicology , Humans , Plant Extracts
6.
Molecules ; 26(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198752

ABSTRACT

In recent years, many studies have reported the frequent detection of antihypertensive agents such as sartans (olmesartan, valsartan, irbesartan and candesartan) in the influents and effluents of wastewater treatment plants (WWTPs) and in the superficial waters of rivers and lakes in both Europe and North America. In this paper, the degradation pathway for candesartan (CAN) was investigated by simulating the chlorination process that is normally used to reduce microbial contamination in a WWTP. Twelve isolated degradation byproducts (DPs), four of which were isolated for the first time, were separated on a C-18 column by employing a gradient HPLC method, and their structures were identified by combining nuclear magnetic resonance and mass spectrometry and comparing the results with commercial standards. On the basis of these results, a mechanism of formation starting from the parent drug is proposed. The ecotoxicity of CAN and its DPs was studied by conducting a battery of ecotoxicity tests; bioassays were performed using Aliivibrio fischeri (bacterium), Daphnia magna (planktonic crustacean) and Raphidocelis subcapitata (alga). The ecotoxicity results shed new light on the increased toxicity of DPs compared with the parent compound.


Subject(s)
Benzimidazoles/analysis , Biphenyl Compounds/analysis , Hypochlorous Acid/chemistry , Tetrazoles/analysis , Water Pollutants, Chemical/analysis , Aliivibrio fischeri/drug effects , Animals , Benzimidazoles/toxicity , Biphenyl Compounds/toxicity , Chlorophyceae/drug effects , Daphnia/drug effects , Europe , Lakes/chemistry , North America , Rivers/chemistry , Tetrazoles/toxicity , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Water Purification
7.
Molecules ; 26(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33809869

ABSTRACT

The discovery of various sartans, which are among the most used antihypertensive drugs in the world, is increasingly frequent not only in wastewater but also in surface water and, in some cases, even in drinking or groundwater. In this paper, the degradation pathway of olmesartan acid, one of the most used sartans, was investigated by simulating the chlorination process normally used in a wastewater treatment plant to reduce similar emerging pollutants. The structures of nine isolated degradation byproducts (DPs), eight of which were isolated for the first time, were separated via chromatography column and HPLC methods, identified by combining nuclear magnetic resonance and mass spectrometry, and justified by a proposed mechanism of formation beginning from the parent drug. Ecotoxicity tests on olmesartan acid and its nine DPs showed that 50% of the investigated byproducts inhibited the target species Aliivibrio fischeri and Raphidocelis subcapitata, causing functional decreases of 18% and 53%, respectively.


Subject(s)
Aliivibrio fischeri/growth & development , Imidazoles/analysis , Tetrazoles/analysis , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Purification , Chromatography, High Pressure Liquid , Nuclear Magnetic Resonance, Biomolecular
8.
J Pharm Biomed Anal ; 194: 113762, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33248860

ABSTRACT

Diclofenac (DCF) is the most widely prescribed non-steroidal anti-inflammatory drug in the world and it has been detected in drinking and surface waters. In this paper, the effect of chlorination process on DCF in aqueous solutions was investigated and the structures of 14 isolated degradation by-products (DPs), of which nine are new, have been determined from combining mass spectrometry and nuclear magnetic resonance data and justified by a proposed mechanism of formation beginning from the parent drug. Some degradation by-products show only one phenyl, others are dimers or trimers of the parental compound, which has undergone oxidative decarboxylation of the side chain and/or chlorination of this or one or both aromatic rings. Ecotoxicological bioassays evidenced the following sensitivities D. magna < R. subcapitata < A. fischeri. The isolated DPs (DP1-8, except for DP9) exhibited effects ≥ 50 % in the exposed microalgae and crustaceans showing toxicities mainly ranked from slight to acute.


Subject(s)
Diclofenac , Water Pollutants, Chemical , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Diclofenac/toxicity , Oxidation-Reduction , Sodium Hypochlorite/toxicity , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Sci Total Environ ; 712: 135625, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32050394

ABSTRACT

Recently, many studies highlighted the consistent finding of irbesartan in effluents from wastewater treatment plants (WWTPs) and in some rivers and lakes in both Europe and North America, suggesting that no >80% can be removed by specific treatments. The present investigation attempts to study the chemical fate of irbesartan in a simulated chlorination step, mimicking the conditions of a WWTP. A total of six disinfection by-products were identified, five were completely new, and separated on a C-18 column by employing a gradient HPLC method. Initially, a complete mass fragmentation pathway of the drug was established with the help of MS/TOF, and subsequently, the disinfection by-products were subjected to MS/TOF mass studies to obtain their mass and fragment pattern. The MS results helped to assign tentative structures to the disinfection products, which were verified through 1D and 2D NMR experiments. The chemical structures of the new compounds have been justified by a proposed mechanism of formation. A preliminary ecotoxicity assessment with the crustacean Daphnia magna showed that some of the identified by-products were up to 12-times more toxic than irbesartan.


Subject(s)
Disinfection , Europe , Hypochlorous Acid , Irbesartan , North America , Water Pollutants, Chemical , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...