Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 60(7): 3720-3726, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33245831

ABSTRACT

A compact and negatively charged acceptor group, N-(cyanamino)sulfonyl, is introduced for dye design and its influence on the absorption and emission spectra of the "push-pull" chromophores is demonstrated with 1,3,6-tris[(cyanamino)sulfonyl]-8-aminopyrene. The new sulfonamides, including O-phosphorylated (3-hydroxyazetidine)-N-sulfonyl, are negatively charged electron acceptors and auxochromes. 1-Aminopyrenes decorated with the new sulfonamides have three or six negative charges (pH ≥8), low m/z ratios, high mobilities in an electric field, and yellow to orange emission. We labeled maltodextrin oligomers by reductive amination, separated the products by electrophoresis, and demonstrated their high brightness in a commercial DNA analyzer and the distribution of the emission signal among the detection channels.

2.
Angew Chem Int Ed Engl ; 59(14): 5505-5509, 2020 03 27.
Article in English | MEDLINE | ID: mdl-31895495

ABSTRACT

1-Aminopyrenes with three ω-hydroxylated N-alkylsulfonamido or alkylsulfonyl residues in positions 3, 6, and 8 were prepared, O-phosphorylated, and applied for reductive amination of oligosaccharides. The dyes (ϵ≈20 000 m-1 cm-1 ) with six negative charges (pH≥8) and low m/z ratios enable labeling and fluorescence detection of reducing sugars (glycans) related to the most structurally and functionally diverse class of natural products. Under excitation with a 488 nm laser, the new glycoconjugates emit yellow light of about 560 nm, outperforming (with respect to brightness and faster electrophoretic mobilities) the corresponding APTS derivatives (benchmark dye with green emission in conjugates).

3.
Food Chem ; 301: 125247, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31377626

ABSTRACT

In this work, we developed a simple method for the preparation of N-(3-azido-2-hydroxypropyl)chitosan. We compared the antibacterial activity of N-(3-azido-2-hydroxypropyl)chitosans and previously synthesized N-(2-azidoethyl)chitosans. N-(3-azido-2-hydroxypropyl)chitosans possess higher antibacterial effect which is comparable with that of ampicillin and gentamicin. The effect is due to azido pharmacophore -CH2-CH(OH)-CH2-N3 (for N-(3-azido-2-hydroxypropyl)chitosan) or -CH2-CH2-N3 (for N-(2-azidoethyl)chitosan) introduced in chitosan chain, since the corresponding organic azides NH2-CH2-CH2-N3 and NH2-CH2-CH2-N3 are characterized by high antibacterial activity. However, high antibacterial organic azides NH2-CH2-CH2-N3 and NH2-CH2-CH2-N3 are characterized by high toxicity. Their conjugation to the chitosan chain saves their antibacterial effect, but strongly diminishes their toxicity, and the toxicity of the resulting derivatives is comparable with that of the starting chitosan. These findings are of interest to food science, since novel effective food coatings can be developed on basis of prepared derivatives.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Azides/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Food Packaging , Anti-Bacterial Agents/toxicity , Chitosan/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...