Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 55(Pt 6): 1514-1527, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36570664

ABSTRACT

Event-mode data collection presents remarkable new opportunities for time-of-flight neutron scattering studies of collective excitations, diffuse scattering from short-range atomic and magnetic structures, and neutron crystallography. In these experiments, large volumes of the reciprocal space are surveyed, often using different wavelengths and counting times. These data then have to be added together, with accurate propagation of the counting errors. This paper presents a statistically correct way of adding and histogramming the data for single-crystal time-of-flight neutron scattering measurements. In order to gain a broader community acceptance, particular attention is given to improving the efficiency of calculations.

2.
Nat Mater ; 20(9): 1221-1227, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33888904

ABSTRACT

The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe0.55Se0.45. However, the topological features and superconducting properties are not observed uniformly across the sample surface. The understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy, and microprobe composition and resistivity measurements to characterize the electronic state of Fe1+yTe1-xSex. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, whereas the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe0.55Se0.45 is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.

3.
Rev Sci Instrum ; 89(9): 093001, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278744

ABSTRACT

This article strives to expand on existing work to demonstrate advancements in data processing made available using event mode measurements. Most spallation neutron sources in the world have data acquisition systems that provide event recording. The new science that is enabled by utilizing event mode has only begun to be explored. In the past, these studies were difficult to perform because histograms forced dealing with either large chunks of time or a large number of files. With event based data collection, data can be explored and rebinned long after the measurement has completed. This article will review some of the principles of event data and how the method opens up new possibilities for in situ measurements, highlighting techniques that can be used to explore changes in the data. We also demonstrate the statistical basis for determining data quality and address the challenge of determining how long to measure mid-measurement. Finally, we demonstrate a model independent method of grouping data via hierarchical clustering methods that can be used to improve calibration, reduction, and data exploration.

5.
J Appl Crystallogr ; 49(Pt 2): 497-506, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27047306

ABSTRACT

Evidence is mounting that potentially exploitable properties of technologically and chemically interesting crystalline materials are often attributable to local structure effects, which can be observed as modulated diffuse scattering (mDS) next to Bragg diffraction (BD). BD forms a regular sparse grid of intense discrete points in reciprocal space. Traditionally, the intensity of each Bragg peak is extracted by integration of each individual reflection first, followed by application of the required corrections. In contrast, mDS is weak and covers expansive volumes of reciprocal space close to, or between, Bragg reflections. For a representative measurement of the diffuse scattering, multiple sample orientations are generally required, where many points in reciprocal space are measured multiple times and the resulting data are combined. The common post-integration data reduction method is not optimal with regard to counting statistics. A general and inclusive data processing method is needed. In this contribution, a comprehensive data analysis approach is introduced to correct and merge the full volume of scattering data in a single step, while correctly accounting for the statistical weight of the individual measurements. Development of this new approach required the exploration of a data treatment and correction protocol that includes the entire collected reciprocal space volume, using neutron time-of-flight or wavelength-resolved data collected at TOPAZ at the Spallation Neutron Source at Oak Ridge National Laboratory.

6.
Proc Natl Acad Sci U S A ; 112(33): 10316-20, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26240327

ABSTRACT

We report neutron scattering measurements which reveal spin-liquid polymorphism in an "11" iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other is the antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquid-liquid phase transformation between these states, in the electronic spin system of FeTe(1-x)(S,Se)(x). We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. Our results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike.

SELECTION OF CITATIONS
SEARCH DETAIL
...