Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 80 ( Pt 1): 33-9, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9474774

ABSTRACT

Polyploids in Tripsacum, a wild relative of maize, reproduce through the diplosporous type of apomixis, an asexual mode of reproduction through seeds. Diplosporous apomixis involves both the failure of meiosis and the parthenogenetic development of the unreduced gametes, resulting in progenies that are exact genetic copies of the mother plant. Apomixis is believed to be controlled by one single dominant allele, responsible for the whole developmental process. Construction of a linkage map for the chromosome controlling diplosporous apomixis in Tripsacum was carried out in both tetraploid-apomictic and diploid-sexual Tripsacum species using maize restriction fragment length polymorphism (RFLP) probes. A high level of collinearity was observed between the Tripsacum chromosome carrying the control of apomixis and a duplicated segment in the maize genome. In the apomictic tetraploid, there was a strong restriction to recombination, as compared to the corresponding genomic segment in sexual plants and maize. This suggests that apomixis, although inherited as a single Mendelian allele, might really be controlled by a cluster of linked loci. The analysis also revealed the tetrasomic nature of the inheritance of the chromosomal segment controlling apomixis, which contradicts the usually accepted hypothesis of an allopolyploid origin of apomictic species. The implications of these data for the transfer of apomixis into cultivated crops are discussed, and a new approach to studying the genetics of apomixis, based on comparative mapping, is proposed.


Subject(s)
Chromosome Mapping , Edible Grain/genetics , Genes, Plant , Polyploidy
2.
Heredity (Edinb) ; 80 ( Pt 1): 40-7, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9474775

ABSTRACT

Apomixis is a mode of asexual reproduction through seeds. The apomictic process bypasses both meiosis and egg cell fertilization, producing offspring that are exact genetic replicas of the mother plant. In the Tripsacum agamic complex, all polyploids reproduce through the diplosporous type of apomixis, and diploids are sexual. In this paper, molecular markers linked with diplospory were used to analyse various generations of maize-Tripsacum hybrids and backcross derivatives and to derive a model for the inheritance of diplosporous reproduction. The results suggest that the gene or genes controlling apomixis in Tripsacum are linked with a segregation distorter-type system promoting the elimination of the apomixis alleles when transmitted through haploid gametes. Hence, this model offers an explanation of the relationship between apomixis and polyploidy. The evolutionary importance of this mechanism, which protects the diploid level from being invaded by apomixis, is discussed.


Subject(s)
Edible Grain/genetics , Genes, Plant , Zea mays/genetics , Chimera , Genetic Markers , Polymorphism, Restriction Fragment Length , Reproduction
3.
Theor Appl Genet ; 90(7-8): 1198-203, 1995 Jun.
Article in English | MEDLINE | ID: mdl-24173084

ABSTRACT

Polyploid plants in the genus Tripsacum, a wild relative of maize, reproduce through gametophytic apomixis of the diplosporous type, an asexual mode of reproduction through seed. Moving gene(s) responsible for the apomictic trait into crop plants would open new areas in plant breeding and agriculture. Efforts to transfer apomixis from Tripsacum into maize at CIMMYT resulted in numerou intergeneric F1 hybrids obtained from various Tripsacum species. A bulk-segregant analysis was carried out to identify molecular markers linked to diplospory in T. dactyloides. This was possible because of numerous genome similarities among related species in the Andropogoneae. On the basis of maize RFLP probes, three restriction fragments co-segregating with diplospory were identified in one maize-Tripsacum dactyloides F1 population that segregated 1∶1 for the mode of reproduction. The markers were also found to be linked in the maize RFLP map, on the distal end of the long arm of chromosome 6. These results support a simple inheritance of diplospory in Tripsacum. Manipulation of the mode of reproduction in maize-Tripsacum backcross generations, and implications for the transfer of apomixis into maize, are discussed.

4.
Theor Appl Genet ; 58(2): 153-6, 1980 Mar.
Article in English | MEDLINE | ID: mdl-24301282

ABSTRACT

Cytological analyses in series of crosses between 7 sexual pistillate and 8 apomictic staminate parents of speciesPanicum maximum (Gramineae) are reported. Although these 15 progenitors were tetraploid (2n = 32), 2 dihaploids (2n = 16), 45 hexaploids (2n = 48) and 5 octoploids (2n = 64) were observed among 333 progeny plants. The role of unreduced gametes as the originators of polyploidy is discussed in relation to the so-called 'elements of apomixis'. The 2 dihaploids appeared to be sexual while the hexaploids and octoploids were all apomictic. At the tetraploid level sexual and apomictic hybrids segregated in a ratio close to 1∶1. These results were then compared to those already obtained from studies on other tropical grasses and indicate a simple genetic determinism for gametophytic apomixis.

SELECTION OF CITATIONS
SEARCH DETAIL
...