Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200005, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33280565

ABSTRACT

A European consortium of 15 laboratories across nine nations have worked together under the EUROFusion Enabling Research grants for the past decade with three principle objectives. These are: (a) investigating obstacles to ignition on megaJoule-class laser facilities; (b) investigating novel alternative approaches to ignition, including basic studies for fast ignition (both electron and ion-driven), auxiliary heating, shock ignition, etc.; and (c) developing technologies that will be required in the future for a fusion reactor. A brief overview of these activities, presented here, along with new calculations relates the concept of auxiliary heating of inertial fusion targets, and provides possible future directions of research and development for the updated European Roadmap that is due at the end of 2020. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

2.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200159, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33280566

ABSTRACT

Fast ignition inertial confinement fusion requires the production of a low-density channel in plasma with density scale-lengths of several hundred microns. The channel assists in the propagation of an ultra-intense laser pulse used to generate fast electrons which form a hot spot on the side of pre-compressed fusion fuel. We present a systematic characterization of an expanding laser-produced plasma using optical interferometry, benchmarked against three-dimensional hydrodynamic simulations. Magnetic fields associated with channel formation are probed using proton radiography, and compared to magnetic field structures generated in full-scale particle-in-cell simulations. We present observations of long-lived, straight channels produced by the Habara-Kodama-Tanaka whole-beam self-focusing mechanism, overcoming a critical barrier on the path to realizing fast ignition. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

3.
Phys Rev Lett ; 123(11): 113604, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31573265

ABSTRACT

In this Letter, we investigate the effect of orbital angular momentum (OAM) on elastic photon-photon scattering in a vacuum for the first time. We define exact solutions to the vacuum electromagnetic wave equation which carry OAM. Using those, the expected coupling between three initial waves is derived in the framework of an effective field theory based on the Euler-Heisenberg Lagrangian and shows that OAM adds a signature to the generated photons thereby greatly improving the signal-to-noise ratio. This forms the basis for a proposed high-power laser experiment utilizing quantum optics techniques to filter the generated photons based on their OAM state.

4.
Rev Sci Instrum ; 89(10): 103509, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399934

ABSTRACT

Accurate characterization of laser pulses used in experiments is a crucial step to the analysis of their results. In this paper, a novel single-shot frequency-resolved optical gating (FROG) device is described, one that incorporates a dispersive element which allows it to fully characterize pulses up to 25 ps in duration with a 65 fs per pixel temporal resolution. A newly developed phase retrieval routine based on memetic algorithms is implemented and shown to circumvent the stagnation problem that often occurs with traditional FROG analysis programs when they encounter a local minimum.

SELECTION OF CITATIONS
SEARCH DETAIL
...