Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(11): 2960-2977, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38682257

ABSTRACT

Focusing on the regeneration of damaged knee meniscus, we propose a hybrid scaffold made of poly(ester-urethane) (PEU) and collagen that combines suitable mechanical properties with enhanced biological integration. To ensure biocompatibility and degradability, the degradable PEU was prepared from a poly(ε-caprolactone), L-lysine diisocyanate prepolymer (PCL di-NCO) and poly(lactic-co-glycolic acid) diol (PLGA). The resulting PEU (Mn = 52 000 g mol-1) was used to prepare porous scaffolds using the solvent casting (SC)/particle leaching (PL) method at an optimized salt/PEU weight ratio of 5 : 1. The morphology, pore size and porosity of the scaffolds were evaluated by SEM showing interconnected pores with a uniform size of around 170 µm. Mechanical properties were found to be close to those of the human meniscus (Ey ∼ 0.6 MPa at 37 °C). To enhance the biological properties, incorporation of collagen type 1 (Col) was then performed via soaking, injection or forced infiltration. The latter yielded the best results as shown by SEM-EDX and X-ray tomography analyses that confirmed the morphology and highlighted the efficient pore Col-coating with an average of 0.3 wt% Col in the scaffolds. Finally, in vitro L929 cell assays confirmed higher cell proliferation and an improved cellular affinity towards the proposed scaffolds compared to culture plates and a gold standard commercial meniscal implant.


Subject(s)
Meniscus , Polyesters , Polyurethanes , Tissue Scaffolds , Tissue Scaffolds/chemistry , Porosity , Polyesters/chemistry , Polyurethanes/chemistry , Animals , Humans , Collagen/chemistry , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
2.
Molecules ; 29(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38398518

ABSTRACT

To develop an orthopedic scaffold that could overcome the limitations of implants used in clinics, we designed poly(ester-urethane) foams and compared their properties with those of a commercial gold standard. A degradable poly(ester-urethane) was synthetized by polyaddition between a diisocyanate poly(ε-caprolactone) prepolymer (PCL di-NCO, Mn = 2400 g·mol-1) and poly(lactic-co-glycolic acid) diol (PLGA, Mn = 2200 g·mol-1) acting as a chain extender. The resulting high-molecular-weight poly(ester-urethane) (PEU, Mn = 87,000 g·mol-1) was obtained and thoroughly characterized by NMR, FTIR and SEC-MALS. The porous scaffolds were then processed using the solvent casting (SC)/particle leaching (PL) method with different NaCl crystal concentrations. The morphology, pore size and porosity of the foams were evaluated using SEM, showing interconnected pores with a uniform size of around 150 µm. The mechanical properties of the scaffolds are close to those of the human meniscus (Ey = 0.5~1 MPa). Their degradation under accelerated conditions confirms that incorporating PLGA into the scaffolds greatly accelerates their degradation rate compared to the gold-standard implant. Finally, a cytotoxicity study confirmed the absence of the cytotoxicity of the PEU, with a 90% viability of the L929 cells. These results suggest that degradable porous PLGA/PCL poly(ester-urethane) has potential in the development of meniscal implants.


Subject(s)
Biocompatible Materials , Caproates , Lactones , Polyurethanes , Humans , Polyurethanes/chemistry , Biocompatible Materials/chemistry , Polyglactin 910 , Porosity , Polyesters/chemistry , Esters , Tissue Scaffolds/chemistry , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...