Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Trends Plant Sci ; 29(3): 329-342, 2024 03.
Article in English | MEDLINE | ID: mdl-37723010

ABSTRACT

Studies across different crops demonstrated that grain or seed number per unit area (GN m-2) is the dominant yield component. Although grains or seeds derive from floret or flower production and survival, the timing of the critical period for GN m-2 determination is known to vary noticeably, from mainly pre-flowering to strongly post-flowering, across major grain crops. Here, we demonstrate that discrepancy between crops in the timing of their critical period is related to the flowering phase duration and the proportion of the whole cycle allocated to pre-flowering development. Changing the perspective, positioning the critical period at the end of the phase when grain abortion occurs instead of flowering, results in the critical period virtually coinciding among contrasting grain crops.


Subject(s)
Crops, Agricultural , Edible Grain , Seeds , Flowers , Reproduction
2.
J Exp Bot ; 74(21): 6608-6618, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37658847

ABSTRACT

Barley is a long-day plant with a major gene (PPD-H1) that determines its photoperiod sensitivity. Under long days (i.e. 16 h), flowering occurs earlier in sensitive (Ppd-H1) than in insensitive (ppd-H1) genotypes, while under short days (i.e. 12 h) both flower late and more or less simultaneously. We hypothesized that (i) the sensitive line should flower later than the insensitive line under very short days (<12 h), and (ii) both the sensitive and insensitive lines should have similar phenology under very long days (>18 h). When comparing a pair of spring isogenic lines for sensitive and insensitive PPD-H1 alleles (introgressing the PPD-H1 allele into the barley cultivar 'WI4441'), we found responses fully in line with expectations for the commonly explored range from 12 to 16-18 h. When the responses were extended to very short days, sensitivity increased noticeably, and time to flowering of the sensitive line was longer than that of the insensitive one. Under very long days, the sensitive line did not respond further (it seemed to have reached its minimum time to flowering under a 16 h period), while the insensitive line continued shortening its time to flowering until c. 21 h. Consequently, both lines flowered similarly under very long days, which opens opportunities to easily test for differences in earliness per se, as in wheat.


Subject(s)
Hordeum , Photoperiod , Hordeum/genetics , Genotype , Flowers/genetics
3.
J Sci Food Agric ; 101(15): 6496-6504, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34000070

ABSTRACT

BACKGROUND: Barley (Hordeum vulgare L.) is a healthy grain because of its high content of dietary fibre and phenolic compounds. It faces periods of high temperature during grain filling, frequently reducing grain weight. Heat stress may also affect some of the bioactive compounds present in the grain. To produce quality grains that provide nutritional and health benefits, it is important to understand the effect of environmental stresses on the quantity and quality of bioactive compounds. RESULTS: We have studied the effect of post-anthesis thermal stress on barley bioactive compounds and antioxidant capacity under Mediterranean field conditions during two consecutive growing seasons in four barley genotypes. Thermal stress affected grain weight and size and changed the relative composition of bioactive compounds. The relationship between heat stress and grain ß-glucans and arabinoxylans content was indirect, as the resulting increases in concentrations were due to the lower grain weight under stress. Conversely, heat stress had a significant direct impact on some phenolic compounds, increasing their concentrations differentially across genotypes, which contributed to an improvement in antioxidant capacity of up to 30%. CONCLUSION: Post-anthesis thermal stress had a significant effect on ß-glucans, arabinoxylans, phenolic compound concentration and antioxidant capacity of barley grains. Final grain quality could, at least partially, be controlled in order to increase the bioactive concentrations in the barley grain, by cultivation in growing areas prone to heat stress. Late sowings or late flowering genotypes could also be considered, should a premium be implemented to compensate for lower yields. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Antioxidants/metabolism , Hordeum/metabolism , Phytochemicals/metabolism , Seeds/chemistry , beta-Glucans/metabolism , Antioxidants/analysis , Dietary Fiber/analysis , Dietary Fiber/metabolism , Ecosystem , Genotype , Heat-Shock Response , Hordeum/chemistry , Hordeum/genetics , Hordeum/growth & development , Hot Temperature , Phenols/analysis , Phenols/metabolism , Phytochemicals/analysis , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Xylans/analysis , Xylans/metabolism , beta-Glucans/analysis
4.
Plants (Basel) ; 10(3)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805828

ABSTRACT

Earliness per se (Eps) genes are important to fine tune adaptation, and studying their probable pleiotropic effect on wheat yield traits is worthwhile. In addition, it has been shown that some Eps genes interact with temperature and therefore determining the likely Eps × temperature interaction is needed for each newly identified Eps gene. We studied two NILs differing in the newly identified Eps-7D (carrying insensitive Ppd-D1 in the background) under three temperature regimes (9, 15 and 18 °C) and two photoperiods (12 and 24 h). Eps-7D affected time to anthesis as expected and the Eps-7D-late allele extended both the period before and after terminal spikelet. The interaction effect of Eps-7D × temperature was significant but not cross-over: the magnitude and level of significance of the difference between NILs with the late or early allele was affected by the growing temperature (i.e., difference was least at 18 °C and largest at 9 °C), and the differences caused due to temperature sensitivity were influenced by photoperiod. The rate of leaf initiation was faster in NIL with Eps-7D-early than with the late allele which compensated for the shorter duration of leaf initiation resulting in similar final leaf number between two NILs. Eps-7D-late consistently increased spike fertility through improving floret primordia survival as a consequence of extending the late reproductive phase.

5.
Plants (Basel) ; 10(3)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809009

ABSTRACT

Earliness per se (Eps) genes may play a critical role in further improving wheat adaptation and fine-tuning wheat development to cope with climate change. There are only few studies on the detailed effect of Eps on wheat development and fewer on the interaction of Eps with the environment and other genes determining time to anthesis. Furthermore, it seems relevant to study every newly discovered Eps gene and its probable interactions as the mechanisms and detailed effects of each Eps may be quite different. In the present study, we evaluated NILs differing in the recently identified Eps-7D as well as in Ppd-D1 at three temperature regimes (9, 15 and 18 °C) under short day. The effect of Eps-7D on time to anthesis as well as on its component phases varied both qualitatively and quantitatively depending on the allelic status of Ppd-D1 and temperature, being larger in a photoperiod-sensitive background. A more noticeable effect of Eps-7D (when combined with Ppd-D1b) was realised during the late reproductive phase. Consequently, the final leaf number was not clearly altered by Eps-7D, while floret development of the labile florets (florets 2 and 3 in this case, depending on the particular spikelet) was favoured by the action of the Eps-7D-late allele, increasing the likelihood of particular florets to become fertile, and consequently, improving spike fertility when combined with Ppd-D1b.

6.
Plants (Basel) ; 10(3)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810185

ABSTRACT

High temperatures at the end of the season are frequent under Mediterranean conditions, affecting final grain quality. This study determined the deposition patterns throughout grain filling of dry matter, dietary fiber, phenolic compounds and antioxidant capacity for four barley genotypes under two contrasting temperatures. Deposition pattern for dietary fiber followed that of grain weight. Genotypic differences for duration were more significant than for rate. Anthocyanins followed a second-degree polynomial pattern, reaching a maximum before grain maturation. Free and bound phenols decreased as grain developed, suggesting that they are synthesized in early stages. Rate of bound phenols deposition was more sensitive to genotypic changes. Overall, antioxidant capacity decreased over time; the decay being less steep under stress for all genotypes. Heat stress negatively affected grain weight. It did not alter the profile of ß-glucans and arabinoxylans deposition but positively changed the accumulation of some phenolic compounds, increasing the antioxidant capacity differentially across genotypes. These results support the growing of food barley in high-temperature stress-prone areas, as some bioactive compound and antioxidant capacity will increase, regardless of the smaller grain size. Moreover, if a market develops for food-barley ingredients, early harvesting of non-mature grain to maximize antioxidant capacity should be considered.

7.
Sci Rep ; 11(1): 2451, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510240

ABSTRACT

Earliness per se (Eps) genes are reported to be important in fine-tuning flowering time in wheat independently of photoperiod (Ppd) and vernalisation (Vrn). Unlike Ppd and Vrn genes, Eps have relatively small effects and their physiological effect along with chromosomal position are not well defined. We evaluated eight lines derived from crossing two vernalisation insensitive lines, Paragon and Baj (late and early flowering respectively), to study the detailed effects of two newly identified QTLs, Eps-7D and Eps-2B and their interactions under field conditions. The effect of both QTLs was minor and was affected by the allelic status of the other. While the magnitude of effect of these QTLs on anthesis was similar, they are associated with very different profiles of pre-anthesis development which also depends on their interaction. Eps-7D affected both duration before and after terminal spikelet while not affecting final leaf number (FLN) so Eps-7D-early had a faster rate of leaf appearance. Eps-2B acted more specifically in the early reproductive phase and slightly altered FLN without affecting the leaf appearance rate. Both QTLs affected the spike fertility by altering the rate of floret development and mortality. The effect of Eps-2B was very small but consistent in that -late allele tended to produce more fertile florets.


Subject(s)
Epistasis, Genetic , Fertility/genetics , Flowers/physiology , Quantitative Trait Loci/genetics , Triticum/growth & development , Triticum/genetics , Alleles , Analysis of Variance , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Flowers/genetics , Plant Leaves/anatomy & histology , Plant Shoots/anatomy & histology , United Kingdom
8.
Front Plant Sci ; 11: 314, 2020.
Article in English | MEDLINE | ID: mdl-32265965

ABSTRACT

Temperature and nitrogen (N) availability are two important environmental factors that may produce important changes in grain composition during grain filling of bread wheat. In this study, four wheat lines with the down-regulation of gliadins by means of RNA interference (RNAi) have been characterized to determine the effect of thermal stress and N availability on grain weight and quality; with focus on gliadin and glutenin protein fractions. Grain weight was reduced with heat stress (HS) in all RNAi lines, whereas gliadin content was increased in the wild-types. With respect to gliadin content, RNAi lines responded to HS and N availability differently from their respective wild-types, except for ω-gliadin content, indicating a very clear stability of silencing under different environmental conditions. In a context of increased temperature and HS events, and in environments with different N availability, the RNAi lines with down-regulated gliadins seem well suited for the production of wheat grain with low gliadin content.

9.
Curr Opin Plant Biol ; 45(Pt B): 276-283, 2018 10.
Article in English | MEDLINE | ID: mdl-30078739

ABSTRACT

Deleterious effects of heat on crop yields are well documented and the occurrence of heat stresses will likely be a major constraint to achieving increased yields of major crops. Thus, agronomic and genetic strategies for increased resilience to high temperatures will be necessary. Much of the work done on this area has been focused to identify genetic sources of increased resilience and much less has been done on the crop ecology side. Nitrogen (N) fertilization is within the most common management practices used in cereal production, however, there have been limited efforts to elucidate to what degree the level of soil fertility may affect the magnitude of the high temperature effect on crop yield. The likely interaction may be relevant for designing more appropriate fertilization strategies. We conducted different studies on maize (2009-2012) and wheat (2012-2013), always under field conditions, to determine whether the availability of N may be responsible for the magnitude of the yield penalty imposed by heat stress during reproductive phases (i.e. when heat waves are more likely). We concluded that sensitivity to heat stress increased with increasing N availability and speculated that moderate N stress might produce in the crop plants a sort of acclimation to reduce sensitivity to other stresses. Fertilisation recommendations in the future may need to balance the yielding benefits of high N availability with the detrimental effect of increasing sensitivity to heat stress.


Subject(s)
Nitrogen/metabolism , Triticum/metabolism , Zea mays/metabolism , Droughts , Hot Temperature
10.
J Exp Bot ; 69(10): 2633-2645, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29562264

ABSTRACT

As wheat yield is linearly related to grain number, understanding the physiological determinants of the number of fertile florets based on floret development dynamics due to the role of the particular genes is relevant. The effects of photoperiod genes on dynamics of floret development are largely ignored. Field experiments were carried out to (i) characterize the dynamics of floret primordia initiation and degeneration and (ii) to determine which are the most critical traits of such dynamics in establishing genotypic differences in the number of fertile florets at anthesis in near isogenic lines (NILs) carrying photoperiod-insensitive alleles. Results varied in magnitude between the two growing seasons, but in general introgression of Ppd-1a alleles reduced the number of fertile florets. The actual effect was affected not only by the genome and the doses but also by the source of the alleles. Differences in the number of fertile florets were mainly explained by differences in the floret generation/degeneration dynamics, and in most cases associated with floret survival. Manipulating photoperiod insensitivity, unquestionably useful for changing flowering time, may reduce spike fertility but much less than proportionally to the change in duration of development, as the insensitivity alleles did increase the rate of floret development.


Subject(s)
Flowers/growth & development , Plant Leaves/growth & development , Plant Proteins/genetics , Triticum/physiology , Fertility , Flowers/genetics , Plant Leaves/genetics , Plant Proteins/metabolism , Triticum/genetics , Triticum/growth & development
11.
J Exp Bot ; 69(10): 2621-2631, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29562296

ABSTRACT

Wheat adaptation is affected by Ppd genes, but the role of these alleles in the rates of leaf and spikelet initiation has not been properly analysed. Twelve near isogenic lines (NILs) combining Ppd-1a alleles from different donors introgressed in A, B, and/or D genomes were tested under field conditions during two growing seasons together with the wild type, Paragon. Leaf initiation rate was unaffected by Ppd-1a alleles so the final leaf number (FLN) was reduced in parallel with reductions in the duration of the vegetative phase. Spikelet primordia initiation was accelerated and consequently the effect on spikelets per spike was less than proportional to the effect on the duration of spikelet initiation. The magnitude of these effects on spikelet plastochron depended on the doses of Ppd-1 homoeoalleles and the specific insensitivity alleles carried. Double ridge was consistently later than floral initiation, but the difference between them was not affected by Ppd-1a alleles. These findings have potential for selecting the best combinations from the Ppd-1 homoeoallelic series for manipulating adaptation taking into consideration particular effects on spikelet number.


Subject(s)
Flowers/growth & development , Plant Leaves/growth & development , Plant Proteins/genetics , Triticum/genetics , Flowers/genetics , Plant Leaves/genetics , Plant Proteins/metabolism , Triticum/growth & development , Triticum/metabolism
12.
Sci Rep ; 6: 38288, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27922071

ABSTRACT

High-carotenoid corn (Carolight®) has been developed as a vehicle to deliver pro-vitamin A in the diet and thus address vitamin A deficiency in at-risk populations in developing countries. Like any other novel crop, the performance of Carolight® must be tested in different environments to ensure that optimal yields and productivity are maintained, particularly in this case to ensure that the engineered metabolic pathway does not attract a yield penalty. Here we compared the performance of Carolight® with its near isogenic white corn inbred parental line under greenhouse and field conditions, and monitored the stability of the introduced trait. We found that Carolight® was indistinguishable from its near isogenic line in terms of agronomic performance, particularly grain yield and its main components. We also established experimentally that the functionality of the introduced trait was indistinguishable when plants were grown in a controlled environment or in the field. Such thorough characterization under different agronomic conditions is rarely performed even for first-generation traits such as herbicide tolerance and pest resistance, and certainly not for complex second-generation traits such as the metabolic remodeling in the Carolight® variety. Our results therefore indicate that Carolight® can now be incorporated into breeding lines to generate hybrids with locally adapted varieties for further product development and assessment.


Subject(s)
Carotenoids/biosynthesis , Edible Grain/genetics , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Proteins/genetics , Zea mays/genetics , Biomass , Carotenoids/classification , Carotenoids/genetics , Carotenoids/isolation & purification , Chromatography, High Pressure Liquid , Edible Grain/growth & development , Edible Grain/metabolism , Mass Spectrometry , Metabolic Networks and Pathways/genetics , Photosynthesis , Plant Breeding , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Zea mays/growth & development , Zea mays/metabolism
13.
J Exp Bot ; 64(10): 2859-69, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23669574

ABSTRACT

Survival of floret primordia initiated seems critical for the determination of grain number and yield in wheat, and understanding what determines floret mortality would help in the development of more robust physiological models of yield determination. The growth of the juvenile spikes has been frequently considered the determinant of grain number, implying that floret development would depend on resource availability and that the onset of floret death would be related to spike growth. However, this model has been recently challenged from a study concluding that floret death started when the most advanced floret primordia reached a particular developmental stage. As the few previous studies on this relationship involved photoperiod treatments which affect both floret development and the onset of spike growth, conclusions cannot be considered mechanistic. This comprehensive study analysed in detail floret development in wheat as affected by resource availability (mainly soil nitrogen levels) and found that the onset of floret death may occur when development of the most advanced florets ranged from stages 5 to 9 and that the average and standard deviation of floret developmental stage coinciding with the onset of floret death was not related to the level of availability of resources. These results provide further support to the model relating the onset of floret death with the initiation of active growth of the juvenile spike in which florets are developing.


Subject(s)
Flowers/cytology , Triticum/growth & development , Cell Death , Flowers/growth & development , Flowers/metabolism , Nitrogen/metabolism , Triticum/cytology , Triticum/metabolism
14.
J Exp Bot ; 64(1): 169-84, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23162124

ABSTRACT

Wheat yield depends on the number of grains per square metre, which in turn is related to the number of fertile florets at anthesis. The dynamics of floret generation/degeneration were studied in contrasting conditions of nitrogen (N) and water availability of modern, well-adapted, durum wheats in order to understand further the bases for grain number determination. Experiments were carried out during the 2008-2009 and 2009-2010 growing seasons at Lleida (NE Spain). The first experiment involved four cultivars (Claudio, Donduro, Simeto, and Vitron) and two contrasting N availabilities (50 kgN ha(-1) and 250 kgN ha(-1); N50 and N250) while experiment 2 included the two cultivars most contrasting in grain setting responsiveness to N in experiment 1, and two levels of N (N50 and N250), under irrigated (IR) and rainfed (RF) conditions. In addition, a detillering treatment was imposed on both cultivars under the IR+N250 condition. The number of fertile florets at anthesis was increased by ~30% in response to N fertilization (averaging across treatments and spikelet positions). The effect of N and water availability was evident on floret developmental rates from the third floret primordium onwards, as these florets in the central spikelets of all genotypes reached the stage of a fertile floret in N250 while in N50 they did not. In this study, clear differences were found between the cultivars in their responsiveness to N by producing more fertile florets at anthesis (through accelerating developmental rates of floret primordia), by increasing the likelihood of particular grains to be set, or by both traits.


Subject(s)
Flowers/drug effects , Flowers/growth & development , Nitrogen/pharmacology , Seeds/drug effects , Seeds/growth & development , Triticum/drug effects , Triticum/growth & development , Fertility/drug effects , Plant Shoots/anatomy & histology , Plant Shoots/drug effects , Spain
15.
J Exp Bot ; 61(15): 4351-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20696655

ABSTRACT

In Mediterranean durum wheat production, nitrogen (N) fertilization may be important to stabilize and increase yields. Wheat yield responses to N fertilization are usually related to grains per m(2), which in turn is the consequence of processes related to floret development (floret initiation followed by floret death/survival) during stem elongation. The literature is rather scarce in terms of the relevance of floret developmental dynamics, determining the final number of grains in general terms and in particular regarding responsiveness to N. The aim of this study was to determine whether durum wheat responses to N under different water regimes are related to the dynamics of development of floret primordia to produce fertile florets. During the 2006-2007 and 2007-2008 growing seasons, experiments with a factorial combination of two N levels (0 and 100 or 250 kg N ha(-1)) and two levels of water availability (rainfed and irrigated) were carried out (although the water regime was only effective in the second season). The response of yield was largely a consequence of that in grain number per spike. Floret initiation was similar for both N levels in each experiment and water regime, for which the survival of a higher proportion of initiated florets was critical in the response of the crop. The diminished rate of floret abortion during the late part of stem elongation in response to N was associated with a slightly accelerated rate of floret development which allowed a higher proportion of the primordia initiated to reach the stage of fertile floret by flowering.


Subject(s)
Flowers/drug effects , Flowers/growth & development , Nitrogen/pharmacology , Triticum/drug effects , Triticum/growth & development , Biomass , Plant Stems/drug effects , Plant Stems/growth & development , Rain , Spain , Sunlight , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...