Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Accid Anal Prev ; 188: 107116, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37216697

ABSTRACT

Braking assistance systems are already contributing to improving motorcyclists' safety, however, research on emergency systems acting on the steering is lacking. These systems, already available for passenger cars, could prevent or mitigate motorcycle crashes in which safety functions based only on braking are ineffective. The first research question was to quantify the safety impact of diverse emergency assistance systems acting on the steering of a motorcycle. For the most promising system, the second research question was to assess the feasibility of its intervention using a real motorcycle. Three emergency steering assistance systems were defined in terms of Functionality, Purpose, and Applicability: Motorcycle Curve Assist (MCA), Motorcycle Stabilisation (MS), and Motorcycle Autonomous Emergency Steering (MAES). Experts evaluated each system's applicability and effectiveness based on the specific crash configuration (using Definitions for Classifying Accidents - DCA), the Knowledge-Based system of Motorcycle Safety (KBMS), and the In-Depth Crash Reconstruction (IDCR). An experimental campaign was conducted with an instrumented motorcycle to assess the rider's reaction to external steering input. A surrogate method for an active steering assistance system imparted external steering torques in correspondence with a lane change to analyse the effect of the steering inputs on motorcycle dynamics and rider controllability. MAES globally got the best score for each assessment method. MS received better evaluations than MCA in two out of three methods. The union of the three systems covered a sizeable fraction of the crashes considered (maximum score in 22.8% of the cases). An estimation of the injury potential mitigation, based on injury risk functions for motorcyclists, was made for the most promising system (MAES). The field test data and video footage showed no instability or loss of control, despite the high intensity (>20Nm) of the external steering input. The rider interviews confirmed that the external action was intense but manageable. For the first time, this study presents an exploratory assessment of the applicability, benefits, and feasibility of motorcycle safety functions acting on the steering. MAES, in particular, was found applicable to a relevant share of crashes involving motorcycles. Remarkably, applying an external action to produce a lateral avoidance manoeuvre proved feasible in a real-world test setting.


Subject(s)
Accidents, Traffic , Motorcycles , Humans , Accidents, Traffic/prevention & control , Protective Devices , Automobiles
2.
Traffic Inj Prev ; 24(2): 132-139, 2023.
Article in English | MEDLINE | ID: mdl-36697386

ABSTRACT

OBJECTIVE: Active safety systems such as motorcycle autonomous emergency braking (MAEB) capable of ensuring effectiveness and safe rider-vehicle interaction present many potential benefits to reduce road fatalities but also many challenges. The whole development cycle of MAEB requires research through extensive field tests that reproduce unexpected interventions or real-life driving situation before the system can be available to the end-user. This study aims to better understand the rider's kinematic response required to control the stability of the rider-motorcycle system, as well as the extent of unexpectedness perceived by participants under different degrees of awareness of automatic braking (AB) activation. METHODS: We compared responses to AB in anticipated and (un)anticipated conditions and in a condition that was intended to be genuinely unexpected (Out of the Blue). Twenty men and women, wearing an inertial measurement unit on their upper-back, rode a scooter-type motorcycle with two front wheels simulating urban riding maneuvers on a closed test-track. Three automatic braking (AB) profiles were tested in different sessions, ranged from 3 to 5 m/s2 deceleration and 15 to 25 m/s3 braking-jerk. Differences between AB conditions were analyzed using linear mixed models. RESULTS: The unanticipated condition was perceived as fairly unexpected (rated between Quite Unexpected and Very Unexpected). Out of the Blue condition was on average close to the highest level of unexpectedness (Completely Unexpected). The exposure to unanticipated AB events resulted in upper-body response with larger peaks of pitch rate (0.20 to 0.77 rad/s higher) and acceleration (1.0 to 2.3 m/s2 higher) than those of anticipated. Participants showed less postural stability during unanticipated events taking longer both to start correcting the initial forward lean and to fully stabilize balance. Unanticipated and Out of the Blue conditions did not differ in either the amplitude of the kinematic variables or the time-to-peak pitch rate. CONCLUSIONS: The kinematic response of the rider's upper-body was found to be a reliable estimator of unexpectedness in AB. The findings suggest that unanticipated AB events while the rider engages in riding tasks can enable testing aimed at designing MAEB systems and assessing end-user acceptance in a reliable manner and within ethical safety limits.


Subject(s)
Accidents, Traffic , Automobile Driving , Male , Humans , Female , Accidents, Traffic/prevention & control , Motorcycles , Deceleration , Protective Devices
3.
Traffic Inj Prev ; 23(sup1): S174-S180, 2022.
Article in English | MEDLINE | ID: mdl-36200698

ABSTRACT

Objective: Vehicles are increasingly being equipped with Autonomous Emergency Braking (AEB) and literature highlights the utility to fit a similar active safety system in Powered Two-Wheelers (PTWs). This research attempts to analyze the efficacy of PTW Autonomous Emergency Braking (MAEB) when functioning solely, and in the case where both the PTW and Opponent Vehicle (OV) have AEB installed.Methods: 23 crashes involving motorcyclists that occurred in metropolitan areas of Italy between 2009 and 2017 were selected. The "In-depth Study of road Accidents in FlorencE (InSAFE)" provides data for the study. Each crash was reconstructed in PC-Crash 12.1 software. The obtained simulation of the crash dynamics was then used to create the dataset of cases fitted with AEB and MAEB systems. A custom MAEB system was implemented with specifications based on literature.Results: The majority of crashes occurred on urban roads, at intersections, on dry asphalt, with clear visibility, and in daylight. The passenger vehicle was the most frequent opponent vehicle (70%). Almost half the sample involved the PTW rider traveling beyond the speed limit permitted on urban roads. MAEB was found to be applicable in 19 out of 23 real-world crashes allowing the avoidance of two crashes with the progressive triggering criteria (Time to Collision (TTC) - 1.0 s) and one crash in the case where both the PTW and OV have AEB installed with more conservative setups. MAEB simulations show important trends in the reduction of the PTW impact speed (ISR) from the conservative (TTC-0.6s) to standard (TTC-0.8s) to progressive (TTC-1.0s) triggering criteria. The mean impact speed reduction (ISR) becomes 8.6 km/h, 13.8 km/h, 19.1 km/h, respectively.Conclusions: The results suggested that MAEB may be extremely effective in the PTW impact speed reduction and that an earlier MAEB intervention is beneficial in achieving higher reductions in the PTW impact speed. Further, the effect of opponent vehicles also possessing AEB was studied, and it was found that this increased the likelihood of crash avoidance and greater reduction in crash severity in unavoidable circumstances.


Subject(s)
Motorcycles , Wounds and Injuries , Humans , Protective Devices , Accidents, Traffic , Computer Simulation , Italy/epidemiology
4.
Traffic Inj Prev ; 23(sup1): S56-S61, 2022.
Article in English | MEDLINE | ID: mdl-36026461

ABSTRACT

OBJECTIVE: Safely negotiating curves with a powered-two-wheeler (PTW) requires a high level of skill, and a significant proportion of PTW crashes have a curve involvement. This study aimed to estimate the applicability, potential benefits and feasibility of novel Motorcycle Curve Assist (MCA). The system is designed to operate an emergency control of the speed of a motorcycle approaching a bend at an inappropriate speed. METHODS: First, the MCA system intervention was defined. Second, the applicability of the system and an estimate of its potential benefits was performed based on a PTW crash database. Motorcyclists' injury risk estimates, MCA working parameters and timing of intervention were employed to estimate the potential injury reduction of applicable crash types. Third, a field test campaign involving 29 common riders as participants was conducted to investigate the real-world applicability and acceptability among end-users of the system deployment in one relevant riding condition adopting a range of parameters of intervention. RESULTS: In the crash database, 23% of cases had curve involvement and after detailed analysis, 14% resulted to be suitable for MCA (60% of cases with curve involvement). The potential relative injury risk reduction considering only the benefits due to crash speed reduction ranged from 3-9% for MAIS2+ to 9-27% for MAIS3+ injuries. Field tests were performed in corners approached at an average speed of 28.7 km/h and an average lean angle of 20°. The system provided a mean deceleration of 0.33 g reached with a fade-in jerk of 1.73 g/s, for an average total duration of 0.59 s. For the field test component, participants reported good controllability of the system, with no incipient loss of control recorded nor reported by participants. CONCLUSIONS: The proposed approach for MCA implementation showed considerable potential benefits in terms of injury reduction. The intervention with the defined working parameters was considered feasible by a sample of end-users. When integrated with an intervention logic capable of predicting emergency situations while approaching curves, MCA will be a technology capable of assisting PTW riders in conditions where other available active safety systems do not.


Subject(s)
Accidents, Traffic , Motorcycles , Humans , Accidents, Traffic/prevention & control , Risk , Databases, Factual
5.
MethodsX ; 8: 101225, 2021.
Article in English | MEDLINE | ID: mdl-34434748

ABSTRACT

Autonomous Emergency Braking (AEB) was proved to be an effective and reliable technology in reducing serious consequences of road vehicles crashes. However, the feasibility in terms of end-users' acceptability for the AEB for motorcycles (MAEB) still has to be evaluated. So far, only Automatic Braking (AB) activations in straight-line motion and decelerations up to 2 m/s2 were tested with common riders. This paper presents a procedure which provides comprehensive support for the design of new experiments to further investigate the feasibility of MAEB among end-users. Additionally, this method can be used as a reference for designing tests for other advanced rider assistance systems.•A comprehensive literature review was carried out to investigate previous findings related to MAEB. After that, a series of pilot tests using an automatic braking device on an instrumented motorcycle were performed.•The specifications for new AB experiments were defined (in terms of test conditions, participants requirements, safety measures, test vehicles and instrumentation).•A test protocol was defined to test the system in different riding conditions and with different AB working parameters. A proposal for the data analysis was presented.

6.
Traffic Inj Prev ; 22(sup1): S104-S110, 2021.
Article in English | MEDLINE | ID: mdl-34432553

ABSTRACT

OBJECTIVE: Recent field-tests on Motorcycle Autonomous Emergency Braking system (MAEB) showed that higher levels of deceleration to improve its effectiveness were feasible. However, the potential of MAEB in mitigating rider injuries is not well understood, particularly in scenarios where the efficacy of standard MAEB is limited because the rider is manually braking. The purpose of this study was first, to assess the injury mitigation potential of MAEB and second, to test MAEB as an enhanced braking system applied in circumstances where the rider is braking before a crash. METHODS: Data from previously investigated motorcycle injury crashes that occurred on public roads in Victoria, Australia were reconstructed using a 2D model. The intervention of MAEB was applied in the simulations to test both MAEB standard and MAEB working as enhanced braking system. The effects of MAEB in mitigating crashes were separated by crash configuration and evaluated based on the modeled reductions in impact speed and injury risk, employing injury risk functions available in the literature. RESULTS: After modeling was applied, MAEB was found to be applicable in 30 cases (91% of those in which was estimated as "possibly applicable"). The modeled Impact Speed Reduction (ISR) among the 30 cases averaged 5.0 km/h. In the cases without manual braking, the mean ISR due to standard MAEB was 7.1 km/h, whereas the relative injury risk reduction ranged from 10% for MAIS2+ to 22% for fatal injuries. In the 14 cases with manual braking, the modeled application of MAEB as enhanced braking led to an average ISR ranging from 5.3 km/h to 7.3 km/h. This resulted in an injury risk reduction ranging from 9% to 12% for MAIS2+ and from 16% to 21% for fatal injuries, depending on the different modes of MAEB. CONCLUSIONS: This study modeled the potential benefits of the highest levels of intervention for MAEB field-tested to date. The findings estimate the degree to which MAEB could mitigate motorcycle crashes and reduce injury risks for motorcyclists. New strategies for MAEB intervention as enhanced braking were modeled through crash simulations, and suggest improvements in the benefits of MAEB when riders are braking before the crash. This highlighted the requirement to perform new field-based tests to assess the feasibility of MAEB deployed as enhanced braking system.


Subject(s)
Motorcycles , Wounds and Injuries , Accidents, Traffic/prevention & control , Humans , Protective Devices , Risk , Victoria/epidemiology , Wounds and Injuries/epidemiology , Wounds and Injuries/prevention & control
7.
Traffic Inj Prev ; 22(4): 301-306, 2021.
Article in English | MEDLINE | ID: mdl-33829931

ABSTRACT

OBJECTIVE: Motorcycle helmets are the most common and effective protective device to reduce head injuries and mortality in crashes among powered two-wheeler riders. Even if they are globally recognized as effective, there are still concerns regarding their correct use, which is necessary to achieve maximum head protection. The goal of this systematic review is to assess which characteristics of helmet design and use showed a positive influence on rider safety, in order to provide insights to improve end-user helmet usage. METHODS: A literature search was carried out combining two sets of keywords, one related with either motorcycle or rider and the other referring to either protective equipment or injuries. After the exclusion of duplicates, 977 papers were screened by reviewers, thus identifying 32 papers that were analyzed in group discussions. RESULTS: Among the papers included in this study, no strong conflicting conclusions emerged in their results. The studies focusing on the use of different types of helmets highlighted that full-face helmets, compared with other standard helmets, have a positive influence on head injuries and facial injuries. Correct fastening was clearly beneficial for head and facial injuries, induced injuries, and helmet ejection. CONCLUSIONS: This systematic review provides important insights to improve the usage of helmets by end-users. Correct fastening is a crucial factor to avoid helmet roll-off during a crash. Most studies agreed that full-face helmets provide higher protection in comparison with other standard helmets, especially for facial injuries, and no negative influence with respect to neck and spinal injuries.


Subject(s)
Accidents, Traffic/prevention & control , Head Protective Devices/statistics & numerical data , Motorcycles/statistics & numerical data , Spinal Injuries/prevention & control , Accidents, Traffic/mortality , Adult , Craniocerebral Trauma/prevention & control , Facial Injuries/prevention & control , Humans , Male , Protective Devices/statistics & numerical data , Young Adult
8.
Traffic Inj Prev ; 22(3): 246-251, 2021.
Article in English | MEDLINE | ID: mdl-33709844

ABSTRACT

OBJECTIVE: Autonomous Emergency Braking (AEB) is a promising technology for crash avoidance or pre-crash impact speed reduction through the automatic application of braking force. Implementation of AEB technology on motorcycles (MAEB) is still problematic as its interaction with the rider may compromise the safety. In previous studies, MAEB interventions at low decelerations were shown to be easily manageable by common riders in straight line condition, but they were not previously tested in lateral maneuvers such as lane change and swerving, which are common in pre-crash situations. The objective of this paper is to assess the applicability of MAEB activation during lateral avoidance maneuver and to estimate its benefits in this scenario. METHODS: Field tests were carried out involving common riders as participants, using a test protocol developed on the experience of previous studies. The test vehicle was a sport-touring motorcycle equipped with an automatic braking system that could be activated remotely by researchers to simulate MAEB intervention. The motorcycle was equipped with outriggers to prevent capsizing. The Automatic Braking (AB) interventions using a nominal deceleration of 0.3 g were deployed at pseudo-random times in conditions of straight-line travel and a sharp lane-change maneuver emulating a pre-crash avoidance action. The straight-line trials were used as the reference condition for analysis. RESULTS: Thirty-one participants experienced AB interventions in straight-line and lane-change at an average speed of 44.5 km/h. The automatic braking was deployed in all the key phases of the avoidance maneuver. The system reached a deceleration of 0.3 g for a time of intervention of approximately 1 s. The participants were consistently able to control the vehicle during the automatic braking interventions and were always able to complete the lane-change maneuver. The speed reductions obtained with the AB interventions during lane change were very similar to those obtained in the straight-line conditions. CONCLUSIONS: MAEB interventions with decelerations up to 0.3 g can be easily managed by motorcycle riders not only in straight-line conditions but also during an avoidance maneuver. Further investigations using higher deceleration values are now possible.


Subject(s)
Accidents, Traffic/prevention & control , Deceleration , Equipment Safety/statistics & numerical data , Motorcycles/statistics & numerical data , Protective Devices/statistics & numerical data , Adult , Computer Simulation , Emergency Service, Hospital , Humans , Male , Risk Assessment
9.
Traffic Inj Prev ; 22(4): 294-300, 2021.
Article in English | MEDLINE | ID: mdl-33729056

ABSTRACT

OBJECTIVE: Human error by either rider or other vehicle driver is the primary contributing factor in crashes involving powered-two-wheelers. A human-factor-based crash analysis methodology is key to enhancing the road safety effectiveness of rider training interventions. Our aim is to define a methodology that uses in-depth data to identify the skills needed by riders in the highest risk crash configurations to reduce casualty rates. METHODS: The methodology is illustrated through a case study using in-depth data of 803 powered-two-wheeler crashes. Seven types of high-risk crash configuration based on pre-crash trajectories of the road-users involved were considered to investigate the human errors as crash contributors. Primary crash contributing factor, evasive maneuvers performed, horizontal roadway alignment and speed-related factors were identified, along with the most frequent crash configurations and those with the greatest risk of severe injury. RESULTS: Straight Crossing Path/Lateral Direction was the most frequent crash configuration and Turn Across Path/Opposing Direction was identified as that with the highest risk of serious injury. Multi-vehicle crashes cannot be considered as a homogenous category of crashes to which the same human failure is attributed, as different interactions between motorcyclists and other road users are associated with both different types of human error and different rider reactions. Human error in multiple-vehicle crashes differed between those configurations related to crossroads and those related to rear-end and head-end crashes. Both single-vehicle crashes and multi-vehicle head-on crashes frequently occur along curves. The involved collision avoidance maneuvers of the riders differed significantly among the highest risk crash configurations. The most relevant lack of skills are identified and linked to their most representative context. In most cases a combination of different skills was required simultaneously to avoid the crash. CONCLUSIONS: The results contribute to understand the motorcyclists' responses in high-risk crash scenarios. The findings underline the need to group accident cases, beyond the usual single-vehicle versus multi-vehicle collision approach. The different interactions with other road users should be considered to identify the competencies of the motorcyclists needed to reduce crash risks. Our methodology can be applied to increase the motorcyclists' safety by supporting preventive actions based on riders' training and eventually ADAS design.


Subject(s)
Accident Prevention/methods , Accidents, Traffic/prevention & control , Automobile Driving/education , Motorcycles/statistics & numerical data , Wounds and Injuries/prevention & control , Accidents, Traffic/statistics & numerical data , Adult , Automobile Driving/standards , Emergencies , Humans , Program Evaluation/methods , Risk Assessment
10.
Traffic Inj Prev ; 21(1): 78-86, 2020.
Article in English | MEDLINE | ID: mdl-31914321

ABSTRACT

Objective: Active safety systems, of which antilock braking is a prominent example, are going to play an important role to improve powered two-wheeler (PTW) safety. This paper presents a systematic review of the scientific literature on active safety for PTWs. The aim was to list all systems under development, identify knowledge gaps and recognize promising research areas that require further efforts.Methods: A broad search using "safety" as the main keyword was performed on Scopus, Web of Science and Google Scholar, followed by manual screening to identify eligible papers that underwent a full-text review. Finally, the selected papers were grouped by general technology type and analyzed via structured form to identify the following: specific active safety system, study type, outcome type, population/sample where applicable, and overall findings.Results: Of the 8,000 papers identified with the initial search, 85 were selected for full-text review and 62 were finally included in the study, of which 34 were journal papers. The general technology types identified included antilock braking system, autonomous emergency braking, collision avoidance, intersection support, intelligent transportation systems, curve warning, human machine interface systems, stability control, traction control, and vision assistance. Approximately one third of the studies considered the design and early stage testing of safety systems (n. 22); almost one fourth (n.15) included evaluations of system effectiveness.Conclusions: Our systematic review shows that a multiplicity of active safety systems for PTWs were examined in the scientific literature, but the levels of development are diverse. A few systems are currently available in the series production, whereas other systems are still at the level of early-stage prototypes. Safety benefit assessments were conducted for single systems, however, organized comparisons between systems that may inform the prioritization of future research are lacking. Another area of future analysis is on the combined effects of different safety systems, that may be capitalized for better performance and to maximize the safety impact of new technologies.


Subject(s)
Accidents, Traffic/prevention & control , Motorcycles , Protective Devices , Humans
11.
Traffic Inj Prev ; 20(4): 406-412, 2019.
Article in English | MEDLINE | ID: mdl-31059290

ABSTRACT

Objective: Motorcycles and mopeds, often referred to as powered 2-wheelers (PTWs), play an important role in personal mobility worldwide. Despite their advantages, including low cost, space occupancy, and fuel efficiency, the risk of sustaining serious or fatal injuries is higher than that for occupants of passenger cars. The development of safety systems specific for PTWs represents a potential way to reduce casualties among riders. With the proliferation of new active and passive safety technologies, the question as to which might offer the most value is important. In this context, a prioritization process was applied to a set of PTW active safety systems to evaluate their applicability to crash scenarios alone and in combination. The systems included in the study were antilock braking (ABS), autonomous emergency braking (AEB), collision warning, curve warning, and curve assist. Methods: With the functional performance of the 5 safety systems established, the relevance of each system to specific crash configurations and vehicle movements defined by a standardized accident classification system used in Victoria, Australia, was rated by 2 independent reviewers, with a third reviewer acting as a moderator where disagreements occurred. Ratings ranged from 1 (definitely not applicable) to 4 (definitely applicable). Using population-based crash data, the number and percentage of crashes that each safety system could potentially influence, or be relevant for, was defined. Applying accepted injury costs permitted the derivation of the societal economic cost of PTW crashes and the potential reductions associated with each safety system given a theoretical crash avoidance effectiveness of 100%. Results: In the 12-year period 2000-2011, 23,955 PTW riders and 1292 pillion passengers were reported to have been involved in a road crash, with over 500 killed and more than 10,000 seriously injured; only 3.5% of riders/pillion passengers were uninjured. The total economic cost associated with these injured riders and pillion passengers was estimated to be AU$11.1 billion (US$7.70 billion; €6.67 billion). The 5 safety systems, as single solutions or in combination, were relevant to 57% of all crashes and to 74% of riders killed. Antilock braking was found to be relevant to the highest number of crashes, with incremental increases in coverage when combined with other safety systems. Conclusions: The findings demonstrate that ABS, alone and in combination with other safety systems, has the potential to mitigate or possibly prevent a high percentage of PTW crashes in the considered setting. Other safety systems can influence different crash scenarios and are also recommended. Given the high cost of motorcycle crashes and the increasing number of PTW safety technologies, the proposed approach can be used to inform the process of selection of the most suitable interventions to improve PTW safety.


Subject(s)
Accidents, Traffic/statistics & numerical data , Motorcycles/statistics & numerical data , Safety , Humans , Victoria
12.
Sensors (Basel) ; 18(1)2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29351267

ABSTRACT

Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications.

13.
Traffic Inj Prev ; 18(8): 877-885, 2017 11 17.
Article in English | MEDLINE | ID: mdl-28494162

ABSTRACT

OBJECTIVE: Motorcycle riders are involved in significantly more crashes per kilometer driven than passenger car drivers. Nonetheless, the development and implementation of motorcycle safety systems lags far behind that of passenger cars. This research addresses the identification of the most effective motorcycle safety solutions in the context of different countries. METHODS: A knowledge-based system of motorcycle safety (KBMS) was developed to assess the potential for various safety solutions to mitigate or avoid motorcycle crashes. First, a set of 26 common crash scenarios was identified from the analysis of multiple crash databases. Second, the relative effectiveness of 10 safety solutions was assessed for the 26 crash scenarios by a panel of experts. Third, relevant information about crashes was used to weigh the importance of each crash scenario in the region studied. The KBMS method was applied with an Italian database, with a total of more than 1 million motorcycle crashes in the period 2000-2012. RESULTS: When applied to the Italian context, the KBMS suggested that automatic systems designed to compensate for riders' or drivers' errors of commission or omission are the potentially most effective safety solution. The KBMS method showed an effective way to compare the potential of various safety solutions, through a scored list with the expected effectiveness of each safety solution for the region to which the crash data belong. A comparison of our results with a previous study that attempted a systematic prioritization of safety systems for motorcycles (PISa project) showed an encouraging agreement. CONCLUSIONS: Current results revealed that automatic systems have the greatest potential to improve motorcycle safety. Accumulating and encoding expertise in crash analysis from a range of disciplines into a scalable and reusable analytical tool, as proposed with the use of KBMS, has the potential to guide research and development of effective safety systems. As the expert assessment of the crash scenarios is decoupled from the regional crash database, the expert assessment may be reutilized, thereby allowing rapid reanalysis when new crash data become available. In addition, the KBMS methodology has potential application to injury forecasting, driver/rider training strategies, and redesign of existing road infrastructure.


Subject(s)
Accidents, Traffic/prevention & control , Motorcycles , Protective Devices/trends , Safety , Accidents, Traffic/statistics & numerical data , Databases, Factual , Forecasting , Humans , Italy
14.
Traffic Inj Prev ; 18(sup1): S116-S121, 2017 05 29.
Article in English | MEDLINE | ID: mdl-28383999

ABSTRACT

OBJECTIVE: Laboratory studies have demonstrated that impact protectors (IP) used in motorcycle clothing can reduce fracture severities. While crash studies have reported IP are associated with reduced likelihood of soft tissue injury, there is little evidence of their effectiveness in reducing fracture likelihood. This discrepancy might be related to IP quality. There are mandatory requirements for IP supplied with protective clothing in Europe, but not elsewhere. This study examines the energy attenuation performance of IP used by Australian riders. METHODS: IP were harvested from clothing worn by crashed riders admitted to hospital. The IP were examined and energy attenuation properties were determined using EN 1621-1 test procedures. Impact injury was identified from medical records and defined as fractures, dislocations, and avulsions that occurred following impact to the rider's shoulders, elbows, hips, and/or knees. Fisher's exact test was used to examine the relationship between meeting the EN 1621-1 energy attenuation requirements and impact injury. The association between the average and maximum transmitted force, and impact injury was examined using generalized estimating equations. Motorcycle riders were recruited as part of an in-depth crash study through three hospitals in New South Wales, Australia, between 2012 and 2014. Riders were interviewed, and engineers conducted site, vehicle, and clothing inspections. Clothing was collected, or identical garments were purchased. RESULTS: Clothing was inspected for 62 riders. Of these, 19 wore clothing incorporating 76 IP. Twenty-six of these were impacted in the crash event. Almost all impacted IP (96%) were CE marked, and most (83%) met Level 1 energy attenuation requirements of EN 1621-1 when tested. Of the 26 impacted IP, four were associated with impact injuries, including midshaft and distal clavicle fractures and a scapula and olecranon fracture. No associations between meeting EN 1621-1 requirements and impact injury were found (p = 0.5). There was no association between average force transmitted and impact injury (95% CI: 0.91-1.24); however, as maximum force transmitted increased, the odds of impact injury increased (95% CI: 1.01-1.2). These results indicate a high probability of impact injury at 50 kN, the limit of maximum transmitted force specified in EN 1621-1. CONCLUSION: The allowable transmitted force of EN 1621-1 may be too high to effectively reduce the probability of impact injury. This is not surprising, given human tolerance levels that are reported in literature. Reducing the force limit below the reported fracture tolerance limits might be difficult with current technology. However, there is scope to reduce the EN 1621-1 maximum limit of 50 kN transmitted force. A reduction in the maximum force limit would improve rider protection and appears feasible, as 77% of tested IP recorded a maximum force <35 kN. This level of transmitted force is estimated to be associated with <20% probability of impact injury. While the performance of IP available to Australian riders is not regulated, most IP was CE marked. The results indicate a significant association between maximum transmitted force, tested according to EN 1621-1 procedures, and impact injury. Further investigation of the EN 1621-1 requirements may be warranted. This work will interest those targeting protective equipment for motorcyclists as a mechanism for reducing injury to these vulnerable road users.


Subject(s)
Accidents, Traffic/statistics & numerical data , Motorcycles , Protective Clothing/statistics & numerical data , Wounds and Injuries/prevention & control , Adult , Female , Humans , Kinetics , Male , Middle Aged , New South Wales , Probability , Young Adult
15.
Traffic Inj Prev ; 17 Suppl 1: 66-72, 2016 09.
Article in English | MEDLINE | ID: mdl-27586105

ABSTRACT

OBJECTIVE: Autonomous emergency braking (AEB) is a safety system that detects imminent forward collisions and reacts by slowing down the host vehicle without any action from the driver. AEB effectiveness in avoiding and mitigating real-world crashes has recently been demonstrated. Research suggests that a translation of AEB to powered 2-wheelers could also be beneficial. Previous studies have estimated the effects of a motorcycle AEB system (MAEB) via computer simulations. Though effects of MAEB were computed for motorcycle crashes derived from in-depth crash investigation, there may be some inaccuracies due to limitations of postcrash investigation (e.g., inaccuracies in preimpact velocity of the motorcycle). Furthermore, ideal MAEB technology was assumed, which may lead to overestimation of the benefits. This study sought to evaluate the sensitivity of the simulations to variations in reconstructed crash cases and the capacity of the MAEB system in order to provide a more robust estimation of MAEB effects. METHODS: First, a comprehensive classification of accidents was used to identify scenarios in which MAEB was likely to apply, and representative crash cases from those available for this study were populated for each crash scenario. Second, 100 variant cases were generated by randomly varying a set of simulation parameters with given normal distributions around the baseline values. Variants reflected uncertainties in the original data. Third, the effects of MAEB were estimated in terms of the difference in the impact speed of the host motorcycle with and without the system via computer simulations of each variant case. Simulations were repeated assuming both an idealized and a realistic MAEB system. For each crash case, the results in the baseline case and in the variants were compared. A total of 36 crash cases representing 11 common crash scenarios were selected from 3 Australian in-depth data sets: 12 cases from New South Wales, 13 cases from Victoria, and 11 cases from South Australia. RESULTS: The reduction in impact speed elicited by MAEB in the baseline cases ranged from 2.8 to 10.0 km/h. The baseline cases over- or underestimated the mean impact speed reduction of the variant cases by up to 20%. Constraints imposed by simulating more realistic capabilities for an MAEB system produced a decrease in the estimated impact speed reduction of up to 14% (mean 5%) compared to an idealized system. CONCLUSIONS: The small difference between the baseline and variant case results demonstrates that the potential effects of MAEB computed from the cases described in in-depth crash reports are typically a good approximation, despite limitations of postcrash investigation. Furthermore, given that MAEB intervenes very close to the point of impact, limitations of the currently available technologies were not found to have a dramatic influence on the effects of the system.


Subject(s)
Accidents, Traffic/statistics & numerical data , Deceleration , Emergencies , Motorcycles , Protective Devices , Australia , Computer Simulation , Humans
16.
Traffic Inj Prev ; 17(8): 855-62, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27028899

ABSTRACT

OBJECTIVE: Autonomous emergency braking (AEB) acts to slow down a vehicle when an unavoidable impending collision is detected. In addition to documented benefits when applied to passenger cars, AEB has also shown potential when applied to motorcycles (MAEB). However, the feasibility of MAEB as practically applied to motorcycles in the real world is not well understood. METHODS: In this study we performed a field trial involving 16 riders on a test motorcycle subjected to automatic decelerations, thus simulating MAEB activation. The tests were conducted along a rectilinear path at nominal speed of 40 km/h and with mean deceleration of 0.15 g (15% of full braking) deployed at random times. Riders were also exposed to one final undeclared brake activation with the aim of providing genuinely unexpected automatic braking events. RESULTS: Participants were consistently able to manage automatic decelerations of the vehicle with minor to moderate effort. Results of undeclared activations were consistent with those of standard runs. CONCLUSIONS: This study demonstrated the feasibility of a moderate automatic deceleration in a scenario of motorcycle travelling in a straight path, supporting the notion that the application of AEB on motorcycles is practicable. Furthermore, the proposed field trial can be used as a reference for future regulation or consumer tests in order to address safety and acceptability of unexpected automatic decelerations on a motorcycle.


Subject(s)
Accidents, Traffic/prevention & control , Deceleration , Emergencies , Motorcycles , Protective Devices , Adult , Feasibility Studies , Female , Humans , Male , Middle Aged , Young Adult
17.
Traffic Inj Prev ; 16(2): 147-53, 2015.
Article in English | MEDLINE | ID: mdl-24761795

ABSTRACT

OBJECTIVE: Increasing levels of active transport provide benefits in relation to chronic disease and emissions reduction but may be associated with an increased risk of road trauma. The safety in numbers (SiN) effect is often regarded as a solution to this issue; however, the mechanisms underlying its influence are largely unknown. We aimed to (1) replicate the SiN effect within a simple, simulated environment and (2) vary bicycle density within the environment to better understand the circumstances under which SiN applies. METHODS: Using an agent-based modeling approach, we constructed a virtual transport system that increased the number of bicycles from 9% to 35% of total vehicles over a period of 1,000 time units while holding the number of cars in the system constant. We then repeated this experiment under conditions of progressively decreasing bicycle density. RESULTS: We demonstrated that the SiN effect can be reproduced in a virtual environment, closely approximating the exponential relationships between cycling numbers and the relative risk of collision as shown in observational studies. The association, however, was highly contingent upon bicycle density. The relative risk of collisions between cars and bicycles with increasing bicycle numbers showed an association that is progressively linear at decreasing levels of density. CONCLUSIONS: Agent-based modeling may provide a useful tool for understanding the mechanisms underpinning the relationships previously observed between volume and risk under the assumptions of SiN. The SiN effect may apply only under circumstances in which bicycle density also increases over time. Additional mechanisms underpinning the SiN effect, independent of behavioral adjustment by drivers, are explored.


Subject(s)
Accidents, Traffic/statistics & numerical data , Bicycling/statistics & numerical data , Safety , Bicycling/injuries , Computer Simulation , Humans , Models, Theoretical , Risk , Wounds and Injuries/prevention & control
18.
Traffic Inj Prev ; 15 Suppl 1: S165-72, 2014.
Article in English | MEDLINE | ID: mdl-25307383

ABSTRACT

OBJECTIVE: In 2006, Motorcycle Autonomous Emergency Braking (MAEB) was developed by a European Consortium (Powered Two Wheeler Integrated Safety, PISa) as a crash severity countermeasure for riders. This system can detect an obstacle through sensors in the front of the motorcycle and brakes automatically to achieve a 0.3 g deceleration if the collision is inevitable and the rider does not react. However, if the rider does brake, full braking force is applied automatically. Previous research into the potential benefits of MAEB has shown encouraging results. However, this was based on MAEB triggering algorithms designed for motorcycle crashes involving impacts with fixed objects and rear-end crashes. To estimate the full potential benefit of MAEB, there is a need to understand the full spectrum of motorcycle crashes and further develop triggering algorithms that apply to a wider spectrum of crash scenarios. METHODS: In-depth crash data from 3 different countries were used: 80 hospital admittance cases collected during 2012-2013 within a 3-h driving range of Sydney, Australia, 40 crashes with Injury Severity Score (ISS)>15 collected in the metropolitan area of Florence, Italy, during 2009-2012, and 92 fatal crashes that occurred in Sweden during 2008-2009. In the first step, the potential applicability of MAEB among the crashes was assessed using a decision tree method. To achieve this, a new triggering algorithm for MAEB was developed to address crossing scenarios as well as crashes involving stationary objects. In the second step, the potential benefit of MAEB across the applicable crashes was examined by using numerical computer simulations. Each crash was reconstructed twice-once with and once without MAEB deployed. RESULTS: The principal finding is that using the new triggering algorithm, MAEB is seen to apply to a broad range of multivehicle motorcycle crashes. Crash mitigation was achieved through reductions in impact speed of up to approximately 10 percent, depending on the crash scenario and the initial vehicle pre-impact speeds. CONCLUSIONS: This research is the first attempt to evaluate MAEB with simulations on a broad range of crash scenarios using in-depth data. The results give further insights into the feasibility of MAEB in different speed ranges. It is clear then that MAEB is a promising technology that warrants further attention by researchers, manufacturers, and regulators.


Subject(s)
Accidents, Traffic/prevention & control , Deceleration , Emergencies , Motorcycles , Protective Devices , Accidents, Traffic/mortality , Algorithms , Australia , Computer Simulation , Databases, Factual , Feasibility Studies , Humans , Injury Severity Score , Italy , Sweden
19.
Traffic Inj Prev ; 14 Suppl: S40-9, 2013.
Article in English | MEDLINE | ID: mdl-23905921

ABSTRACT

OBJECTIVE: The aim of this study was to assess the feasibility and quantitative potential benefits of a motorcycle autonomous emergency braking (MAEB) system in fatal rear-end crashes. A further aim was to identify possible criticalities of this safety system in the field of powered 2-wheelers (PTWs; e.g., any additional risk introduced by the system itself). METHODS: Seven relevant cases from the Swedish national in-depth fatal crash database were selected. All crashes involved car-following in which a non-anti-lock braking system (ABS)-equipped motorcycle was the bullet vehicle. Those crashes were reconstructed in a virtual environment with Prescan, simulating the road scenario, the vehicles involved, their precrash trajectories, ABS, and, alternatively, MAEB. The MAEB chosen as reference for the investigation was developed within the European Commission-funded Powered Two-Wheeler Integrated Safety (PISa) project and further detailed in later studies, with the addition of the ABS functionality. The boundary conditions of each simulation varied within a range compatible with the uncertainty of the in-depth data and also included a range of possible rider behaviors including the actual one. The benefits of the MAEB were evaluated by comparing the simulated impact speed in each configuration (no ABS/MAEB, ABS only, MAEB). RESULTS: The MAEB proved to be beneficial in a large number of cases. When applicable, the benefits of the system were in line with the expected values. When not applicable, there was no clear evidence of an increased risk for the rider due to the system. DISCUSSION AND LIMITATIONS: MAEB represents an innovative safety device in the field of PTWs, and the feasibility of such a system was investigated with promising results. Nevertheless, this technology is not mature yet for PTW application. Research in the field of passenger cars does not directly apply to PTWs because the activation logic of a braking system is more challenging on PTWs. The deployment of an autonomous deceleration would affect the vehicle dynamics, thus requesting an additional control action of the rider to keep the vehicle stable. In addition, the potential effectiveness of the MAEB should be investigated on a wider set of crash scenarios in order also to avoid false triggering of the autonomous braking.


Subject(s)
Accidents, Traffic/statistics & numerical data , Deceleration , Emergencies , Motorcycles , Protective Devices , Accidents, Traffic/mortality , Adolescent , Adult , Aged , Computer Simulation , Databases, Factual , Feasibility Studies , Humans , Male , Risk Assessment , Sweden , Young Adult
20.
Accid Anal Prev ; 59: 170-84, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23792616

ABSTRACT

In the recent years the autonomous emergency brake (AEB) was introduced in the automotive field to mitigate the injury severity in case of unavoidable collisions. A crucial element for the activation of the AEB is to establish when the obstacle is no longer avoidable by lateral evasive maneuvers (swerving). In the present paper a model to compute the minimum swerving distance needed by a powered two-wheeler (PTW) to avoid the collision against a fixed obstacle, named last-second swerving model (Lsw), is proposed. The effectiveness of the model was investigated by an experimental campaign involving 12 volunteers riding a scooter equipped with a prototype autonomous emergency braking, named motorcycle autonomous emergency braking system (MAEB). The tests showed the performance of the model in evasive trajectory computation for different riding styles and fixed obstacles.


Subject(s)
Accidents, Traffic , Deceleration , Equipment Design , Motorcycles , Equipment Safety , Humans , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...