Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Res Microbiol ; 165(7): 549-58, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25049167

ABSTRACT

Gluconic acid is produced in large quantities by the endophytic and diazotrophic bacterium Gluconacetobacter diazotrophicus Pal5. This organic acid derives from direct oxidation of glucose by a pyrroloquinoline-quinone-linked glucose dehydrogenase in this plant growth-promoting bacterium. In the present article, evidence is presented showing that gluconic acid is also responsible for the antimicrobial activity of G. diazotrophicus Pal5. The broad antagonistic spectrum includes Gram-positive and -negative bacteria. Eukaryotic microorganisms are more resistant to growth inhibition by this acid. Inhibition by gluconic acid can be modified through the presence of other organic acids. In contrast to other microorganisms, the Quorum Sensing system of G. diazotrophicus Pal5, a regulatory mechanism that plays a key role in several microbe-microbe interactions, is not related to gluconic acid production and the concomitant antagonistic activity.


Subject(s)
Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Gluconacetobacter/metabolism , Gluconates/metabolism , Gluconates/pharmacology , Eukaryota/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests
2.
World J Microbiol Biotechnol ; 28(3): 1003-12, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22805821

ABSTRACT

We investigated the potentiality of lactic acid bacteria (LAB) isolated from two apples variety to utilize arginine at different initial pH values. Apples surface contained average levels of bacteria ranging from log 2.49 ± 0.53 to log 3.73 ± 0.48 cfu/ml for Red Delicious and Golden Delicious varieties, respectively. Thirty-one strains able to develop in presence of arginine at low pH were phenotypically and genotipically identified as belonging to Lactobacillus, Pediococcus and Leuconostoc genera. In general, they did not produce ammonia from arginine when cultivated in basal medium with arginine (BMA) at pH 4.5 or 5.2. When this metabolite was quantified only six strains belonging to Leuconostoc dextranicum, Lactobacillus brevis and Lactobacillus plantarum species formed higher ammonia amounts in BMA as compared to control. This was correlated with arginine utilization and it was more pronounced at pH 4.5 than 5.2. Analysis of citrulline production confirmed the arginine utilization in these bacteria by the arginine deiminase (ADI) pathway. Maxima citrulline production was observed for Lactobacillus brevis M15 at the two pH values. In this strain ammonia was formed at higher rate than citrulline, which was detected in concentration lower than 1 mM. Thus, main LAB species found on apple surfaces with abilities to degrade arginine by the ADI pathway under different conditions were reported here at the first time. The results suggested that the ADI pathway in apples LAB might not be mainly relevant for their survival in the acid natural environmental, despite leading to the ammonia formation, which may contribute to the increase in pH, coping the acid stress.


Subject(s)
Arginine/metabolism , Lactobacillales/isolation & purification , Malus/microbiology , Ammonia/metabolism , Bacterial Load , Bacterial Typing Techniques , Citrulline/metabolism , Culture Media/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Hydrogen-Ion Concentration , Lactobacillales/classification , Lactobacillales/genetics , Lactobacillales/metabolism , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...