Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Landmark Ed) ; 28(8): 191, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37664948

ABSTRACT

BACKGROUND: The chromosome 1q12 region harbors the genome's largest pericentromeric heterochromatin domain that includes tandemly repeated satellite III DNA [SatIII (1)]. Increased SatIII (1) copy numbers have been found in cultured human skin fibroblasts (HSFs) during replicative senescence. The aim of this study was to analyze the variation in SatIII (1) abundance in cultured HSFs at early passages depending on the levels of endogenous and exogenous stress. METHODS: We studied 10 HSF cell lines with either high (HSFs from schizophrenic cases, n = 5) or low (HSFs from healthy controls, n = 5) levels of oxidative stress. The levels of endogenous stress were estimated by the amounts of reactive oxygen species, DNA damage markers (8-hydroxy-2'-deoxyguanosine, gamma-H2A histone family member X), pro- and antioxidant proteins (NADPH oxidase 4, superoxide dismutase 1, nuclear factor erythroid 2-related factor 2), and proteins that regulate apoptosis and autophagy (B-cell lymphoma 2 [Bcl-2], Bcl-2-associated X protein, light chain 3). SatIII (1) copy numbers were measured using the nonradioactive quantitative hybridization technique. For comparison, the contents of telomeric and ribosomal RNA gene repeats were determined. RNASATIII (1 and 9) were quantified using quantitative Polymerase Chain Reaction (PCR). RESULTS: Increased SatIII (1) contents in DNA from confluent HSFs were positively correlated with increased oxidative stress. Confluent cell cultivation without medium replacement and heat shock induced a decrease of SatIII (1) in DNA in parallel with a decrease in RNASATIII (1) and an increase in RNASATIII (9). CONCLUSIONS: During HSF cultivation, cells with increased SatIII (1) content accumulated in the cell pool under conditions of exaggerated oxidative stress. This fraction of cells decreased after the additional impact of exogenous stress. The process seems to be oscillatory.


Subject(s)
DNA Copy Number Variations , Schizophrenia , Humans , 8-Hydroxy-2'-Deoxyguanosine , Antioxidants , Fibroblasts , Schizophrenia/genetics
2.
Int J Mol Sci ; 24(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37511043

ABSTRACT

The fragment of satellite III (f-SatIII) is located in pericentromeric heterochromatin of chromosome 1. Cell with an enlarged f-SatIII block does not respond to various stimuli and are highly stress-susceptible. The fraction of f-SatIII in the cells of schizophrenia patients changed during antipsychotic therapy. Therefore, antipsychotics might reduce the f-SatIII content in the cells. We studied the action of haloperidol, risperidone and olanzapine (3 h, 24 h, 96 h) on human skin fibroblast lines (n = 10). The f-SatIII contents in DNA were measured using nonradioactive quantitative hybridization. RNASATIII were quantified using RT-qPCR. The levels of DNA damage markers (8-oxodG, γ-H2AX) and proteins that regulate apoptosis and autophagy were determined by flow cytometry. The antipsychotics reduced the f-SatIII content in DNA and RNASATIII content in RNA from HSFs. After an exposure to the antipsychotics, the autophagy marker LC3 significantly increased, while the apoptosis markers decreased. The f-SatIII content in DNA positively correlated with RNASATIII content in RNA and with DNA oxidation marker 8-oxodG, while negatively correlated with LC3 content. The antipsychotics arrest the process of f-SatIII repeat augmentation in cultured skin fibroblasts via the transcription suppression and/or through upregulated elimination of cells with enlarged f-SatIII blocks with the help of autophagy.


Subject(s)
Antipsychotic Agents , Humans , Antipsychotic Agents/pharmacology , DNA Copy Number Variations , 8-Hydroxy-2'-Deoxyguanosine , DNA , RNA , Benzodiazepines
3.
ACS Biomater Sci Eng ; 9(3): 1391-1401, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36821424

ABSTRACT

Fullerenes and metallofullerenes play an active role in homeostasis of reactive oxygen species and may cause oxidative damage to cells. As pristine fullerenes are a basis for derivatization, studying oxidative DNA damage/repair and apoptosis is important in terms of genotoxicity and cytotoxicity for their biomedical application. Aqueous dispersions of C60, C70, and Gd@C82 (5 nM and 1.5 µM) were cultured with human fetal lung fibroblasts for 1, 3, 24, and 72 h. Oxidative DNA damage/repair was assessed through concentration of 8-oxodG, double-strand breaks, and activation of BRCA1. Activity of apoptosis was assessed through the BCL2/BAX ratio. All three fullerenes caused oxidative modification of DNA at the early stages; C60 caused the most long-term damage, Gd@C82 caused the most short-term damage, and C70 caused "wave-like" dynamics. The dynamics of DNA repair correlated with the dynamics of oxidative damage, but Gd@C82 caused more prolonged activation of the repair system than C60 or C70. The oxidative toxicity of Gd@C82, is minor and the oxidative toxicity of C60 is mild and short-term, in contrast to C70. In relation to the studied effects, the fullerenes can be arranged in a safety row of Gd@C82 > C60 > C70.


Subject(s)
Fullerenes , Humans , Fullerenes/pharmacology , Oxidative Stress , Lung , DNA Repair , Apoptosis , Fibroblasts
4.
Int J Mol Sci ; 22(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502190

ABSTRACT

Inductors of myogenic stem cell differentiation attract attention, as they can be used to treat myodystrophies and post-traumatic injuries. Functionalization of fullerenes makes it possible to obtain water-soluble derivatives with targeted biochemical activity. This study examined the effects of the phosphonate C60 fullerene derivatives on the expression of myogenic transcription factors and myogenic differentiation of human mesenchymal stem cells (MSCs). Uptake of the phosphonate C60 fullerene derivatives in human MSCs, intracellular ROS visualization, superoxide scavenging potential, and the expression of myogenic, adipogenic, and osteogenic differentiation genes were studied. The prolonged MSC incubation (within 7-14 days) with the C60 pentaphoshonate potassium salt promoted their differentiation towards the myogenic lineage. The transcription factors and gene expressions determining myogenic differentiation (MYOD1, MYOG, MYF5, and MRF4) increased, while the expression of osteogenic differentiation factors (BMP2, BMP4, RUNX2, SPP1, and OCN) and adipogenic differentiation factors (CEBPB, LPL, and AP2 (FABP4)) was reduced or did not change. The stimulation of autophagy may be one of the factors contributing to the increased expression of myogenic differentiation genes in MSCs. Autophagy may be caused by intracellular alkalosis and/or short-term intracellular oxidative stress.


Subject(s)
Fullerenes/pharmacology , Mesenchymal Stem Cells/drug effects , Muscle Development , Autophagy , Cell Differentiation , Cells, Cultured , Gene Expression Regulation , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , MyoD Protein/genetics , Myogenic Regulatory Factor 5/genetics , Myogenin/genetics , Reactive Oxygen Species/metabolism
5.
Int J Mol Sci ; 22(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200169

ABSTRACT

BACKGROUND: Fullerenes and metallofullerenes can be considered promising nanopharmaceuticals themselves and as a basis for chemical modification. As reactive oxygen species homeostasis plays a vital role in cells, the study of their effect on genes involved in oxidative stress and anti-inflammatory responses are of particular importance. METHODS: Human fetal lung fibroblasts were incubated with aqueous dispersions of C60, C70, and Gd@C82 in concentrations of 5 nM and 1.5 µM for 1, 3, 24, and 72 h. Cell viability, intracellular ROS, NOX4, NFκB, PRAR-γ, NRF2, heme oxygenase 1, and NAD(P)H quinone dehydrogenase 1 expression have been studied. RESULTS & CONCLUSION: The aqueous dispersions of C60, C70, and Gd@C82 fullerenes are active participants in reactive oxygen species (ROS) homeostasis. Low and high concentrations of aqueous fullerene dispersions (AFD) have similar effects. C70 was the most inert substance, C60 was the most active substance. All AFDs have both "prooxidant" and "antioxidant" effects but with a different balance. Gd@C82 was a substance with more pronounced antioxidant and anti-inflammatory properties, while C70 had more pronounced "prooxidant" properties.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Fibroblasts/metabolism , Fullerenes/pharmacology , Gene Expression Regulation/drug effects , Cells, Cultured , Fetus/drug effects , Fetus/metabolism , Fibroblasts/drug effects , Humans , Lung/drug effects , Lung/metabolism , Nanoparticles , Oxidative Stress , Reactive Oxygen Species/metabolism , Water/chemistry
6.
Chem Commun (Camb) ; 56(70): 10203-10206, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32748905

ABSTRACT

Here we report a straightforward method for the synthesis of a water-soluble C60 fullerene derivative decorated with five residues of phosphonic acid. Self-assembly of the synthesized compound in aqueous solution leads to the formation of nanostructures with unprecedented myogenic and antiviral activity.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Fullerenes/chemistry , Fullerenes/pharmacology , Muscle Development/drug effects , Nanostructures/chemistry , Water/chemistry , Cell Line , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Solubility
7.
Nanomaterials (Basel) ; 10(7)2020 Jul 19.
Article in English | MEDLINE | ID: mdl-32707664

ABSTRACT

BACKGROUND: Functionalized fullerenes (FF) can be considered regulators of intracellular reactive oxygen species (ROS) homeostasis; their direct oxidative damage-as well as regulation of oxidant enzymes and signaling pathways-should be considered. METHODS: Uptake of two water-soluble functionalized C70 fullerenes with different types of aromatic addends (ethylphenylmalonate and thienylacetate) in human fetal lung fibroblasts, intracellular ROS visualization, superoxide scavenging potential, NOX4 expression, NRF2 expression, oxidative DNA damage, repair genes, cell proliferation and cell cycle were studied. RESULTS & CONCLUSION: The intracellular effects of ethylphenylmalonate C70 derivative (FF1) can be explained in terms of upregulated NOX4 activity. The intracellular effects of thienylacetate C70 derivative (FF2) can be probably resulted from its superoxide scavenging potential and inhibition of lipid peroxidation. FF1 can be considered a NOX4 upregulator and potential cytotoxicant and FF2, as a superoxide scavenger and a potential cytoprotector.

8.
Front Oncol ; 9: 445, 2019.
Article in English | MEDLINE | ID: mdl-31205871

ABSTRACT

Introduction: The cell free ribosomal DNA (cf-rDNA) is accrued in the total pool of cell free DNA (cfDNA) in some non-cancer diseases and demonstrates DAMPs characteristics. The major research questions: (1) How does cell free rDNA content change in breast cancer; (2) What type of response in the MCF7 breast cancer cells is caused by cf-rDNA; and (3) What type of DNA sensors (TLR9 or AIM2) is stimulated in MCF7 in response to the action of cf-rDNA? Materials and Methods: CfDNA and gDNA were isolated from the blood plasma and the cells derived from 38 breast cancer patients and 20 healthy female controls. The rDNA content in DNA was determined using non-radioactive quantitative hybridization. In order to explore the rDNA influence on MCF7 breast cancer cells, the model constructs (GC-DNAs) were applied: pBR322-rDNA plasmid (rDNA inset 5836 bp long) and pBR322 vector. ROS generation, DNA damage, cell cycle, expression of TLR9, AIM2, NF-kB, STAT3, and RNA for 44 genes affecting the cancer cell viability were evaluated. The methods used: RT-qPCR, fluorescent microscopy, immunoassay, flow cytometry, and siRNA technology. Results: The ratio R = cf-rDNA/g-rDNA for the cases was higher than for the controls (median 3.4 vs. 0.8, p < 10-8). In MCF7, GC-DNAs induce a ROS burst, DNA damage response, and augmentation of NF-kB and STAT3 activity. The number of the apoptotic cells decreases, while the number of cells with an instable genome (G2/M- arrest, micronuclei) increase. Expression of anti-apoptotic genes (BCL2, BCL2A1, BCL2L1, BIRC3, MDM2) is elevated, while expression of pro-apoptotic genes (BAX, BID, BAD, PMAIP1, BBC3) is lowered. The cells response for pBR322-rDNA is much more intense and develops much faster, than response for pBR322, and is realized through activation of TLR9- MyD88 - NF-kB- signaling. This difference in response speed is owing to the heightened oxidability of pBR322-rDNA and better ability to penetrate the cell. Induction of TLR9 expression in MCF7 is followed by blocking AIM2 expression. Conclusion: (1) Ribosomal DNA accumulates in cfDNA of breast cancer patients; (2) Cell free rDNA induce DNA damage response and stimulates cells survival, including cells with an instable genome; (3) Cell free rDNA triggers TLR9- MyD88- NF-kB- signaling, with significantly repressing the expression of AIM2.

9.
Oxid Med Cell Longev ; 2019: 2348165, 2019.
Article in English | MEDLINE | ID: mdl-30867888

ABSTRACT

OBJECTIVE: Easily oxidizable GC-rich DNA (GC-DNA) fragments accumulate in the cell-free DNA (cfDNA) of patients with various diseases. The human oxidized DNA penetrates the MCF7 breast cancer cells and significantly changes their physiology. It can be assumed that readily oxidizable GC-DNA fragments can penetrate the cancer cells and be expressed. METHODS: MCF7 cells were cultured in the presence of two types of GC-DNA probes: (1) vectors pBR322 and pEGFP and (2) plasmids carrying inserted human rDNA (pBR322-rDNA and pEGFP-rDNA). pEGFP and pEGFP-rDNA contained a CMV promoter and a fluorescent protein gene EGFP. ROS generation rate, accumulation of the DNA probes in MCF7, 8-oxodG content, expression of EGFP and NOX4, and localization of EGFP, NOX4, and 8-oxodG in MCF7 were explored. The applied methods were qPCR, fluorescent microscopy (FM), immunoassay, and flow cytometry (FCA). RESULTS: When GC-DNA is added to the cell culture medium, it interacts with the cell surface. At the site of GC-DNA contact with the cell, NOX4 is expressed, and ROS level increases. The ROS oxidize the GC-DNA. When using the plasmids pEGFP and pEGFP-rDNA, an increase in the amount of the DNA EGFP, RNA EGFP, and EGFP proteins was detected in the cells. These facts suggest that GC-DNA penetrates the cells and the EGFP gene is expressed. Insertions of the rDNA significantly increase the GC-DNA oxidation degree as well as the rate of plasmid transfection into the cells and the EGFP expression level. In the nucleus, the oxidized GC-rDNA fragments, but not the vectors, are localized within the nucleolus. CONCLUSIONS: GC-rich cfDNA fragments that are prone to oxidation can easily penetrate the cancer cells and be expressed. The cfDNA should become a target for the antitumor therapy.


Subject(s)
Breast Neoplasms/genetics , DNA/genetics , Genetic Vectors/genetics , MCF-7 Cells/metabolism , Breast Neoplasms/pathology , Humans , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...