Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsia Open ; 7(3): 462-473, 2022 09.
Article in English | MEDLINE | ID: mdl-35808864

ABSTRACT

OBJECTIVE: Malformations of the polymicrogyria spectrum can be mimicked in rodents through neonatal transcranial focal cortical freeze lesions. The animals presenting the malformations present both altered synaptic events and epileptiform activity in the vicinity of the microgyrus, but the comprehension of their contribution to increased predisposition or severity of seizures require further studies. METHODS: In order to investigate these issues, we induced both microgyria and schizencephaly in 57 mice and evaluated: their convulsive susceptibility and severity after pentyleneterazol (PTZ) treatment, the quantification of their symmetric and asymmetric synapses, the morphology of their dendritic arbors, and the content of modulators of synaptogenesis, such as SPARC, gephyrin and GAP-43 within the adjacent visual cortex. RESULTS: Our results have shown that only schizencephalic animals present increased convulsive severity. Nevertheless, both microgyric and schizencephalic cortices present increased synapse number and dendritic complexity of layer IV and layer V-located neurons. Specifically, the microgyric cortex presented reduced inhibitory synapses, while the schizencephalic cortex presented increased excitatory synapses. This altered synapse number is correlated with decreased content of both the anti-synaptogenic factor SPARC and the inhibitory postsynaptic organizer gephyrin in both malformed groups. Besides, GAP-43 content and dendritic spines number are enhanced exclusively in schizencephalic cortices. SIGNIFICANCE: In conclusion, our study supports the hypothesis that the sum of synaptic alterations drives to convulsive aggravation in animals with schizencephaly, but not microgyria after PTZ treatment. These findings reveal that different malformations of cortical development should trigger epilepsy via different mechanisms, requiring further studies for development of specific therapeutic interventions.


Subject(s)
Neocortex , Polymicrogyria , Schizencephaly , Animals , Disease Models, Animal , GAP-43 Protein , Mice , Pentylenetetrazole , Seizures/chemically induced
2.
Neural Plast ; 2018: 5851914, 2018.
Article in English | MEDLINE | ID: mdl-30275822

ABSTRACT

The regenerative capacity of CNS tracts has ever been a great hurdle to regenerative medicine. Although recent studies have described strategies to stimulate retinal ganglion cells (RGCs) to regenerate axons through the optic nerve, it still remains to be elucidated how these therapies modulate the inhibitory environment of CNS. Thus, the present work investigated the environmental content of the repulsive axon guidance cues, such as Sema3D and its receptors, myelin debris, and astrogliosis, within the regenerating optic nerve of mice submitted to intraocular inflammation + cAMP combined to conditional deletion of PTEN in RGC after optic nerve crush. We show here that treatment was able to promote axonal regeneration through the optic nerve and reach visual targets at twelve weeks after injury. The Regenerating group presented reduced MBP levels, increased microglia/macrophage number, and reduced astrocyte reactivity and CSPG content following optic nerve injury. In addition, Sema3D content and its receptors are reduced in the Regenerating group. Together, our results provide, for the first time, evidence that several regenerative repulsive signals are reduced in regenerating optic nerve fibers following a combined therapy. Therefore, the treatment used made the CNS microenvironment more permissive to regeneration.


Subject(s)
Nerve Crush/adverse effects , Nerve Regeneration/physiology , Optic Nerve Injuries/pathology , Optic Nerve/pathology , Optic Nerve/physiology , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optic Nerve/ultrastructure , Optic Nerve Injuries/metabolism , Retina/metabolism , Retina/pathology , Retina/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...