Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(30): 27327-27334, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31266298

ABSTRACT

Soft, flexible, and stretchable electronic devices provide novel integration opportunities for wearable and implantable technologies. Despite the existing efforts to endow electronics with the capability of large deformation, the main technological challenge is still in the absence of suitable materials for the manufacturing of stretchable electronic circuits and devices with active (sensitive) and passive (stable) components. Here, we present a universal material, based on single-walled carbon nanotube (SWCNT) films deposited on a polydimethylsiloxane (PDMS) substrate, which can act as a material being both sensitive and insensitive to strain. The diverse performance of SWCNT/PDMS structures was achieved by two simple dry-transfer fabrication approaches: SWCNT film deposition onto the as-prepared PDMS and on the prestretched PDMS surface. The correlation between applied strain, microstructural evolution, and electro-optical properties is discussed on the basis of both experimental and computational results. The SWCNT/PDMS material with the mechanically tunable performance has a small relative resistance change from 0.05 to 0.07, while being stretched from 10 to 40% (stable electrode applications). A high sensitivity of 20.1 of the SWCNT/PDMS structures at a 100% strain was achieved (strain sensing applications). Our SWCNT/PDMS structures have superior transparency and conductivity compared to the ones reported previously, including the SWCNT/PDMS structures, obtained by wet processes.

2.
J Biomed Opt ; 22(6): 65003, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28631004

ABSTRACT

This paper presents the composite biostructures created by laser structuring of the single-walled carbon nanotubes (SWCNTs) in an albumin matrix. Under the exposure of femtosecond laser radiation, the heating of the albumin aqueous solution causes liquid water to evaporate. As a result, we obtained a solid-state composite in the bulk or film form. Using the molecular dynamic method, we showed the formation of a framework from SWCNTs by the example of splicing of the open end of one nanotube with the defect region of another nanotube under the action of the laser heating. Laser heating of SWCNTs up to a temperature of 80°C to 100°C causes the C ? C bond formation. Raman spectra measured for the composite biostructures allowed us to describe the binding of oxygen atoms of amino acid residues of the albumin with the carbon atoms of the SWCNTs. It is found that the interaction energy of the nanotube atoms and albumin atoms amounts up to 580 ?? kJ / mol . We used atomic force microscopy to investigate the surface of the composite biostructures. The pore size is in the range of 30 to 120 nm. It is proved that the proliferation of the fibroblasts occurred on the surface of the composite biostructures during 72 h of incubation.


Subject(s)
Albumins/chemistry , Biocompatible Materials/chemical synthesis , Lasers , Nanotubes, Carbon/chemistry , Animals , Fibroblasts , Microscopy, Atomic Force , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...