Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(8): 13720-13732, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859334

ABSTRACT

In this paper, we propose and demonstrate enhanced orthogonal frequency division multiplexing with index modulation (OFDM-IM) schemes for bandlimited underwater visible light communication (UVLC) systems via geometric constellation shaping (GCS) and subblock interleaving. Specifically, two heuristic GCS approaches based on particle swarm optimization (PSO) and hybrid genetic algorithm-PSO (GA-PSO) algorithms are proposed to generate IM-preferable constellations. Moreover, a generalized interleaving technique is further proposed to overcome the low-pass effect of bandlimited UVLC systems, where an optimal step size can be obtained to perform subblock interleaving. Simulation and experiments are conducted to evaluate the performance of the proposed enhanced OFDM-IM schemes in bandlimited UVLC systems, where both OFDM with single-mode index modulation (OFDM-SM) and OFDM with dual-mode index modulation (OFDM-DM) schemes are considered. The experimental results demonstrate remarkable signal-to-noise ratio (SNR) gains of 1.3 and 1.9 dB for OFDM-SM and OFDM-DM in comparison to the benchmark schemes, respectively.

2.
Opt Express ; 32(3): 4537-4552, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297653

ABSTRACT

In this paper, we propose and demonstrate a 0.5-bit/s/Hz fine-grained adaptive orthogonal frequency division multiplexing (OFDM) modulation scheme for bandlimited underwater visible light communication (UVLC) systems. Particularly, integer spectral efficiency is obtained by conventional OFDM with quadrature amplitude modulation (QAM) constellations, while fractional spectral efficiency is obtained by two newly proposed dual-frame OFDM designs. More specifically, OFDM with dual-frame binary phase-shift keying (DF-BPSK) is designed to achieve a spectral efficiency of 0.5 bit/s/Hz, while OFDM with dual-frame dual-mode index modulation (DF-DMIM) is designed to realize the spectral efficiencies of 0.5+n bits/s/Hz with n being a positive integer (i.e., n = 1, 2, …). The feasibility and superiority of the proposed 0.5-bit/s/Hz fine-grained adaptive OFDM modulation scheme in bandlimited UVLC systems are successfully verified by simulations and proof-of-concept experiments. Experimental results demonstrate that a significant achievable rate gain of 18.6 Mbps can be achieved by the proposed 0.5-bit/s/Hz fine-grained adaptive OFDM modulation in comparison to the traditional 1-bit/s/Hz granularity adaptive OFDM scheme, which corresponds to a rate improvement of 22.1%.

3.
Heliyon ; 9(7): e18156, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539129

ABSTRACT

The Langevin equation (LE) is used to evaluate mode coupling in multimode step-index polymer optical fiber (SI POF) that is both unstrained and strained. The numerical solution of the LE matches the numerical solution of the power flow equation (PFE). Strain-induced mode coupling is noticeably stronger in strained fiber than in unstrained fiber of the same types. Therefore, compared to similar lengths for unstrained fibers, the coupling length of the equilibrium mode distribution (EMD) is attained and the length of fiber required to produce a steady-state distribution (SSD) are both much shorter for strained fibers. We have demonstrated that the mode coupling in strained and unstrained multimode SI POFs that comes from the random perturbations (RPs) of the fiber can be successfully treated by the LE. The study's findings can be used to improve communication and sensory systems that use multimode SI POFs under different bending circumstances. Additionally, it is crucial to be able to compute the modal distribution of the SI POFs used in the optical fiber sensory system at a specific length and under various bending scenarios.

5.
Heliyon ; 9(5): e15882, 2023 May.
Article in English | MEDLINE | ID: mdl-37215769

ABSTRACT

The feasible distance is presented for space division multiplexed (SDM) transmission along multimode silica step-index photonic crystal fiber (SI PCF) by solving the time-independent power flow equation (TI PFE). These distances for two and three spatially multiplexed channels were determined to depend on mode coupling, fiber structural parameters, and launch beam width in order to keep crosstalk in two- and three-channel modulation to a maximum of 20% of the peak signal strength. We found that the length of the fiber at which an SDM can be realized increases with the size of the air-holes in the cladding (higher NA). When a wide launch excites more guiding modes, these lengths become shorter. Such knowledge is valuable for the use of multimode silica SI PCFs in communications.

6.
Polymers (Basel) ; 15(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36987254

ABSTRACT

We investigate mode coupling in a multimode graded-index microstructured polymer optical fiber (GI mPOF) with a solid core by solving the time-independent power flow equation (TI PFE). Using launch beams with various radial offsets, it is possible to calculate for such an optical fiber the transients of the modal power distribution, the length Lc at which an equilibrium mode distribution (EMD) is reached, and the length zs for establishing a steady-state distribution (SSD). In contrast to the conventional GI POF, the GI mPOF explored in this study achieves the EMD at a shorter length Lc. The earlier shift to the phase of slower bandwidth decrease would result from the shorter Lc. These results are helpful for the implementation of multimode GI mPOFs as a part of communications and optical fiber sensory systems.

7.
Opt Express ; 30(14): 24667-24675, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36237015

ABSTRACT

By solving the time-independent power flow equation (TI PFE), we study mode coupling in a multimode W-type microstructured polymer optical fiber (mPOF) with a solid-core. The multimode W-type mPOF is created by modifying the cladding layer and reducing the core of a multimode singly clad (SC) mPOF. For such optical fiber, the angular power distributions, the length Lc at which an equilibrium mode distribution (EMD) is achieved, and the length zs for establishing a steady state distribution (SSD) are determined for various arrangements of the inner cladding's air-holes and different launch excitations. This information is useful for the implement of multimode W-type mPOFs in telecommunications and optical fiber sensors.

8.
Polymers (Basel) ; 14(6)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35335573

ABSTRACT

By solving the Langevin equation, mode coupling in a multimode step-index microstructured polymer optical fibers (SI mPOF) with a solid core was investigated. The numerical integration of the Langevin equation was based on the computer-simulated Langevin force. The numerical solution of the Langevin equation corresponded to the previously reported theoretical data. We demonstrated that by solving the Langevin equation (stochastic differential equation), one can successfully treat a mode coupling in multimode SI mPOF as a stochastic process, since it is caused by its intrinsic random perturbations. Thus, the Langevin equation allowed for a stochastic mathematical description of mode coupling in SI mPOF. Regarding the efficiency and execution speed, the Langevin equation was more favorable than the power flow equation. Such knowledge is useful for the use of multimode SI mPOFs for potential sensing and communication applications.

9.
Polymers (Basel) ; 13(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34883721

ABSTRACT

By solving the time-dependent power flow equation, we present a novel approach for evaluating the bandwidth in a multimode step-index polymer photonic crystal fiber (SI PPCF) with a solid core. The bandwidth of such fiber is determined for various layouts of air holes and widths of Gaussian launch beam distribution. We found that the lower the NA of SI PPCF, the larger the bandwidth. The smaller launch beam leads to a higher bandwidth for short fibers. The influence of the width of the launch beam distribution on bandwidth lessens as the fiber length increases. The bandwidth tends to its launch independent value at a particular fiber length. This length denotes the onset of the steady state distribution (SSD). This information is useful for multimode SI PPCF applications in telecommunications and optical fiber sensing applications.

10.
Polymers (Basel) ; 13(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34833273

ABSTRACT

The bandwidth of multimode W-type plastic optical fibers (POFs) with graded-index (GI) core distribution is investigated by solving the time-dependent power flow equation. The multimode W-type GI POF is designed from a multimode single-clad (SC) GI POF fiber upon modification of the cladding layer of the latter. Results show how the bandwidth in W-type GI POFs can be enhanced by increasing the wavelength for different widths of the intermediate layer and refractive indices of the outer cladding. These fibers are characterized according to their apparent efficiency to reduce modal dispersion and increase bandwidth.

11.
Opt Express ; 29(19): 29587-29594, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34614700

ABSTRACT

A new method is proposed for investigating the bandwidth in multimode graded-index plastic optical fibers (GI POFs). By numerically solving the time-dependent power flow equation, bandwidth is reported for a varied launch conditions (radial offsets) of multimode GI POF. Our theoretical results are supported by the experimental results which show that bandwidth decreases with increasing radial offset. This decrease is more pronounced at short fiber lengths. At fiber length close to the coupling length Lc at which an equilibrium mode distribution (EMD) is achieved, this decrease becomes slower, indicating that mode coupling improves bandwidth at larger fiber lengths. With further increase of fiber length, bandwidth becomes nearly independent of the radial offset, indicating that a steady-state distribution (SSD) is achieved. Such a fiber characterization can be applied to optimize fiber performance in POF links.

12.
Appl Opt ; 53(30): 6999-7003, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25402786

ABSTRACT

By experimental measurement and from a numerical solution to the time-dependent power flow equation, the frequency response, bandwidth, mode coupling, and mode-dependent attenuation are determined for a low-numerical-aperture (NA) plastic optical fiber. Frequency response and bandwidth are specified as a function of fiber length. Numerical results are verified against experimental measurements. Mode coupling and modal attenuation are found to differ substantially between two fiber varieties of the same type (both low-NA, step-index, and plastic), implying their preferential suitability that is application-specific.

13.
Appl Opt ; 52(6): 1117-21, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23434979

ABSTRACT

The power-flow equation is employed to calculate bandwidth of step-index plastic optical fibers (POFs) for different launch conditions. The outcome specifies bandwidth as a function of the mean input angle and width of the launch-beam distribution. For small distribution widths, bandwidth is shown to decrease with increasing mean input angle of the launch-beam distribution. For large distribution widths, bandwidth becomes independent of the launch angle. Launch-beam distribution, mode-dependent attenuation, and mode dispersion and coupling in POFs strongly influence the bandwidth of data transmission systems.

14.
Appl Opt ; 51(20): 4896-901, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22781271

ABSTRACT

For different depth and width of the intermediate layer, a power flow equation is used to calculate spatial transients and steady state of power distribution in W-type optical fibers (doubly clad fibers with three layers). A numerical solution has been obtained by the explicit finite difference method. Results show how the power distribution in W-type optical fibers varies with the depth of the intermediate layer for different values of intermediate layer width and coupling strength. We have found that with increasing depth of the intermediate layer, the fiber length at which the steady-state distribution is achieved increases. Such characterization of these fibers is consistent with their manifested effectiveness in reducing modal dispersion and improving bandwidth.

15.
Radiat Prot Dosimetry ; 150(2): 213-6, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21990390

ABSTRACT

A theoretical evaluation of the properties and processes affecting the radon transport from subsurface soil into buildings is presented in this work. The solution of the relevant transport equation is obtained using the explicit finite difference method (EFDM). Results are compared with analytical steady-state solution reported in the literature. Good agreement is found. It is shown that EFDM is effective and accurate for solving the equation that describes radon diffusion, advection and decay during its transport from subsurface to buildings, which is especially important when arbitrary initial and boundary conditions are required.


Subject(s)
Housing , Models, Theoretical , Numerical Analysis, Computer-Assisted , Radon , Soil Pollutants, Radioactive/analysis , Soil
16.
Appl Opt ; 50(21): 4170-3, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21772404

ABSTRACT

Using the power flow equation, the state of mode coupling in 100-400 µm core step-index silica optical fibers is investigated in this article. Results show the coupling length L(c) at which the equilibrium mode distribution is achieved and the length z(s) of the fiber required for achieving the steady-state mode distribution. Functional dependences of these lengths on the core radius and wavelength are also given. Results agree well with those obtained using a long-established calculation method. Since large core silica optical fibers are used at short distances (usually at lengths of up to 10 m), the light they transmit is at the stage of coupling that is far from the equilibrium and steady-state mode distributions.

17.
Appl Radiat Isot ; 69(1): 237-40, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20870415

ABSTRACT

Radon diffusion through soil and into air is investigated. The solution of the relevant diffusion equation is given using the explicit finite difference method. Results from a two-medium model (soil-air) are compared to those from a simplified single-medium model (soil alone). The latter are an underestimate in early stages of the diffusion process. Later on, the two models match closely and either one can be used at equilibrium conditions to calculate radon diffusion, estimate indoor radon concentration and assess health hazards.


Subject(s)
Air Pollution, Indoor/analysis , Radon/chemistry , Soil Pollutants, Radioactive/chemistry , Air Pollutants/analysis , Air Pollutants/chemistry , Diffusion , Numerical Analysis, Computer-Assisted , Radon/analysis
18.
J Environ Radioact ; 102(2): 103-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21112133

ABSTRACT

Radon-222 diffusion in an anhydrous andesitic melt was investigated. The melts were glass discs formed artificially from melted volcanic materials. Solutions of the relevant diffusion equations were done by the explicit finite difference method. Results were compared to analytical solutions reported in the literature and good agreement was found. We have shown that the explicit finite difference method is effective and accurate for solving equations that describe (222)Rn diffusion in andesitic melts, which is especially important when arbitrary initial and boundary conditions are required.


Subject(s)
Models, Chemical , Radiation Monitoring/methods , Radon/analysis , Volcanic Eruptions/analysis , Diffusion , Radiation Monitoring/statistics & numerical data
19.
Appl Opt ; 49(27): 5076-80, 2010 Sep 20.
Article in English | MEDLINE | ID: mdl-20856280

ABSTRACT

By using the power flow equation, we have examined the state of mode coupling in strained and unstrained step-index glass optical fibers. Strained fibers show stronger mode coupling than their unstrained counterparts of the same type. As a result, the coupling length where equilibrium mode distribution is achieved and the length of fiber required for achieving the steady-state mode distribution are shorter for strained than for unstrained fibers.

20.
Appl Opt ; 48(22): 4496-500, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19649056

ABSTRACT

A method for calculating the coupling coefficient in step-index multimode optical fibers is verified for glass fibers by comparison to published data and to an analytical solution for the steady-state mode distribution. The coefficient that the method calculates is used to determine the state of mode coupling along the fiber, including the coupling length for achieving the equilibrium mode distribution when measurement of fiber characteristics (such as linear attenuation or bandwidth) becomes meaningful.

SELECTION OF CITATIONS
SEARCH DETAIL
...