Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Appl Phys ; 132(17): 174503, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36339744

ABSTRACT

We present high-resolution magnetic resonance imaging (MRI) at ultra-low field (ULF) with a proton Larmor frequency of around 120 kHz. The key element is a specially designed high-sensitivity sensing coil in the shape of a solenoid with a few millimeter gap between windings to decrease the proximity effect and, hence, increase the coil's quality ( Q ) factor and sensitivity. External noise is strongly suppressed by enclosing the sensing coil in a copper cylindrical shield, large enough not to negatively affect the coil's Q factor and sensitivity, measured to be 217 and 0.47 fT/Hz 1 / 2 , respectively. To enhance small polarization of proton spins at ULF, a strong pulsed 0.1 T prepolarization field is applied, making the signal-to-noise ratio (SNR) of ULF MRI sufficient for high-quality imaging in a short time. We demonstrate ULF MRI of a copper sulfate solution phantom with a resolution of 1 × 1 × 8.5 mm 3 and SNR of 10. The acquisition time is 6.3 min without averaging. The sensing coil size in the current realization can accommodate imaging objects of 9 cm in size, sufficient for hand, and it can be further increased for human head imaging in the future. Since the in-plane resolution of 1 × 1 mm 2 is typical in anatomical medical imaging, this ULF MRI method can be an alternative low-cost, rapid, portable method for anatomical medical imaging of the human body or animals. This ULF MRI method can supplement other MRI methods, especially when such methods are restricted due to high cost, portability requirement, imaging artifacts, and other factors.

2.
Phys Rev Lett ; 128(16): 163602, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35522487

ABSTRACT

We demonstrate that stimulated microwave optical sideband generation using parametric frequency conversion can be utilized as a powerful technique for coherent state detection in atomic physics experiments. The technique has advantages over traditional absorption or polarization rotation-based measurements and enables the isolation of signal photons from probe photons. We outline a theoretical framework that accurately models sideband generation using a density matrix formalism. Using this technique, we demonstrate a novel intrinsic magnetic gradiometer that detects magnetic gradient fields between two spatially separated vapor cells by measuring the frequency of the beat note between sidebands generated within each cell. The sidebands are produced with high efficiency using parametric frequency conversion of a probe beam interacting with ^{87}Rb atoms in a coherent superposition of magnetically sensitive hyperfine ground states. Interference between the sidebands generates a low-frequency beat note whose frequency is determined by the magnetic field gradient between the two vapor cells. In contrast to traditional gradiometers the intermediate step of measuring the magnetic field experienced by the two vapor cells is unnecessary. We show that this technique can be readily implemented in a practical device by demonstrating a compact magnetic gradiometer sensor head with a sensitivity of 25 fT/cm/sqrt[Hz] with a 4.4 cm baseline, while operating in a noisy laboratory environment unshielded from Earth's field.

3.
Angew Chem Int Ed Engl ; 60(16): 8823-8826, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33462963

ABSTRACT

Nuclear spin optical rotation (NSOR) has been investigated as a magneto-optical effect, which holds the potential for applications, including hybrid optical-nuclear magnetic resonance (NMR) spectroscopy and gradientless imaging. The intrinsic nature of NSOR renders its detection relatively insensitive, which has prevented it moving from a proof of concept to a method supporting chemical characterizations. In this work, the dissolution dynamic nuclear polarization technique is introduced to provide nuclear spin polarization, increasing the signal-to-noise ratio by several thousand times. NSOR signals of 1 H and 19 F nuclei are observed in a single scan for diluted compounds, which has made this effect suitable for the determination of electronic transitions from a specific nucleus in a large molecule.

4.
Phys Rev Res ; 2(2)2020.
Article in English | MEDLINE | ID: mdl-33117992

ABSTRACT

Magnetometers based on nitrogen-vacancy (NV) centers in diamond are promising room-temperature, solid-state sensors. However, their reported sensitivity to magnetic fields at low frequencies (≾1 kHz) is presently ≿10 pT s1/2, precluding potential applications in medical imaging, geoscience, and navigation. Here we show that high-permeability magnetic flux concentrators, which collect magnetic flux from a larger area and concentrate it into the diamond sensor, can be used to improve the sensitivity of diamond magnetometers. By inserting an NV-doped diamond membrane between two ferrite cones in a bowtie configuration, we realize a ~250-fold increase of the magnetic field amplitude within the diamond. We demonstrate a sensitivity of ~0.9 pT s1/2 to magnetic fields in the frequency range between 10 and 1000 Hz. This is accomplished using a dual-resonance modulation technique to suppress the effect of thermal shifts of the NV spin levels. The magnetometer uses 200 mW of laser power and 20 mW of microwave power. This work introduces a new degree of freedom for the design of diamond sensors by using structured magnetic materials to manipulate magnetic fields.

5.
J Magn Reson ; 317: 106780, 2020 08.
Article in English | MEDLINE | ID: mdl-32688163

ABSTRACT

We experimentally demonstrate the nuclear magnetic resonance (NMR) detection at 1.9 kHz using a detection system comprised of a high-sensitivity single-beam atomic magnetometer and a flux transformer. The single-beam atomic magnetometer has been commercialized by QuSpin for typical operation at low frequencies below 200 Hz with a bandwidth of 135 Hz [1]. However, this magnetometer operation can be extended to much higher frequencies about 2 kHz by applying optimal-bias magnetic fields. The sensitivity of the detection system with a demonstrated signal-to-noise ratio of about 50 for a 20 ml water sample, even without magnetic field shimming, is quite competitive with that in other ultra-low field NMR detection systems, such as the Magritek Terranova system or the system based on our home-built atomic magnetometer installed inside a magnetically shielded room [2]. This ultra-low field NMR approach can be applied to Earth-field NMR detection and imaging. We estimate that the detection system with a modified flux transformer can be sensitive to underground-water detection at depth of 1 meter and deeper, and to field mapping applications.

6.
Nat Commun ; 10(1): 2245, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31113943

ABSTRACT

Exotic spin-dependent interactions between fermions have recently attracted attention in relation to theories beyond the Standard Model. The exotic interactions can be mediated by hypothetical fundamental bosons which may explain several unsolved mysteries in physics. Here we expand this area of research by probing an exotic parity-odd spin- and velocity-dependent interaction between the axial-vector electron coupling and the vector nucleon coupling for polarized electrons. This experiment utilizes a high-sensitivity atomic magnetometer, based on an optically polarized vapor that is a source of polarized electrons, and a solid-state mass containing unpolarized nucleons. The atomic magnetometer can detect an effective magnetic field induced by the exotic interaction between unpolarized nucleons and polarized electrons. We set an experimental limit on the electron-nucleon coupling [Formula: see text] at the mediator boson mass below 10-4 eV, significantly improving the current limit by up to 17 orders of magnitude.

7.
Phys Rev Lett ; 121(9): 091802, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30230894

ABSTRACT

We conducted a search for an exotic spin- and velocity-dependent interaction for polarized electrons with an experimental approach based on a high-sensitivity spin-exchange relaxation-free (SERF) magnetometer, which serves as both a source of polarized electrons and a magnetic-field sensor. The experiment aims to sensitively detect magnetic-fieldlike effects from the exotic interaction between the polarized electrons in a SERF vapor cell and unpolarized nucleons of a closely located solid-state mass. We report experimental results on the interaction with 82 h of data averaging, which sets an experimental limit on the coupling strength around 10^{-19} for the axion mass m_{a}≲10^{-3} eV, within the important axion window.

8.
J Phys Chem Lett ; 9(12): 3323-3327, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29787279

ABSTRACT

We describe the multinuclear detection of nuclear spin optical rotation (NSOR), an effect dependent on the hyperfine interaction between nuclear spins and electrons. Signals of 1H and 19F are discriminated by frequency in a single spectrum acquired at sub-millitesla field. The simultaneously acquired optical signal along with the nuclear magnetic resonance signal allows the calculation of the relative magnitude of the NSOR constants corresponding to different nuclei within the sample molecules. This is illustrated by a larger NSOR signal measured at the 19F frequency despite a smaller corresponding spin concentration. Second, it is shown that heteronuclear J-coupling is observable in the NSOR signal, which can be used to retrieve chemical information. Multinuclear frequency and J resolution can localize optical signals in the molecule. Properties of electronic states at multiple sites in a molecule may therefore ultimately be determined by frequency-resolved NSOR spectroscopy at low field.

9.
MAGMA ; 31(5): 665-676, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29644479

ABSTRACT

OBJECTIVES: The need for affordable and appropriate medical technologies for developing countries continues to rise as challenges such as inadequate energy supply, limited technical expertise, and poor infrastructure persist. Low-field magnetic resonance imaging (LF MRI) is a technology that can be tailored to meet specific imaging needs within such countries. Its low power requirements and the possibility of operating in minimally shielded or unshielded environments make it especially attractive. Although the technology has been widely demonstrated over several decades, it is yet to be shown that it can be diagnostic and improve patient outcomes in clinical applications. We here demonstrate the robustness of prepolarizing MRI (PMRI) technology for assembly and deployment in developing countries for the specific application to infant hydrocephalus. Hydrocephalus treatment planning and management requires only modest spatial resolution, such that the brain can be distinguished from fluid-tissue contrast detail within the brain parenchyma is not essential. MATERIALS AND METHODS: We constructed an internally shielded PMRI system based on the Lee-Whiting coil system with a 22-cm diameter of spherical volume. RESULTS: In an unshielded room, projection phantom images were acquired at 113 kHz with in-plane resolution of 3 mm × 3 mm, by introducing gradient fields of sufficient magnitude to dominate the 5000 ppm inhomogeneity of the readout field. DISCUSSION: The low cost, straightforward assembly, deployment potential, and maintenance requirements demonstrate the suitability of our PMRI system for developing countries. Further improvement in image spatial resolution and contrast of LF MRI will broaden its potential clinical utility beyond hydrocephalus.


Subject(s)
Hydrocephalus/diagnostic imaging , Magnetic Resonance Imaging/instrumentation , Brain/diagnostic imaging , Brain/pathology , Cerebrospinal Fluid , Contrast Media , Equipment Design , Humans , Infant , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Radio Waves , Signal-To-Noise Ratio
10.
Sci Rep ; 7(1): 8896, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827679

ABSTRACT

We demonstrate a magnetometer using polymer encapsulated whispering-gallery-mode microcavity actuated by a micro-magnet. The magnetic field induces force on the micro-magnet causing deformation in the polymer around the microcavity. Subsequently the microcavity detects the change in the refractive index of the polymer resulted from the deformation. This magnetometer works in the frequency range of hertz-to-kilohertz range and achieves a sensitivity of 880 pT/Hz1/2 at 200 Hz in a micro-scale sensor volume. Polymer encapsulation of the magnetometer and fiber optical connection ensures environmental robustness and practicality of the sensor.

11.
Sensors (Basel) ; 16(10)2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27754358

ABSTRACT

Atomic magnetometers (AM) are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC) designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz1/2 sensitivity at low frequency (50 Hz), which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field) with a sensitivity under 10 fT/Hz1/2 and can be used for magneto-encephalography (MEG), magneto-cardiography (MCG), underground communication, ultra-low MRI/NMR, NQR detection, and other applications.

12.
J Magn Reson ; 270: 71-76, 2016 09.
Article in English | MEDLINE | ID: mdl-27423094

ABSTRACT

Hyperpolarization methods offer a unique means of improving low signal strength obtained in low-field NMR. Here, simultaneous measurements of NMR at a field of 0.7mT and laser optical absorption from samples hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) are reported. The NMR measurement field closely corresponds to a typical field encountered during sample injection in a D-DNP experiment. The optical spectroscopy allows determination of the concentration of the free radical required for DNP. Correlation of radical concentration to NMR measurement of spin polarization and spin-lattice relaxation time allows determination of relaxivity and can be used for optimization of the D-DNP process. Further, the observation of the nuclear Overhauser effect originating from hyperpolarized spins is demonstrated. Signals from (1)H and (19)F in a mixture of trifluoroethanol and water are detected in a single spectrum, while different atoms of the same type are distinguished by J-coupling patterns. The resulting signal changes of individual peaks are indicative of molecular contact, suggesting a new application area of hyperpolarized low-field NMR for the determination of intermolecular interactions.

13.
Sci Rep ; 6: 24773, 2016 04 22.
Article in English | MEDLINE | ID: mdl-27103463

ABSTRACT

Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized device can achieve a unique combination of high resolution (80 µm) and high sensitivity (8.1 pT/). In addition, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.


Subject(s)
Magnetic Phenomena , Magnetometry/methods , Microscopy/instrumentation , Microscopy/methods
14.
J Magn Reson ; 249: 49-52, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25462946

ABSTRACT

Recently, anatomical ultra-low field (ULF) MRI has been demonstrated with an atomic magnetometer (AM). A flux-transformer (FT) has been used for decoupling MRI fields and gradients to avoid their negative effects on AM performance. The field of view (FOV) was limited because of the need to compromise between the size of the FT input coil and MRI sensitivity per voxel. Multi-channel acquisition is a well-known solution to increase FOV without significantly reducing sensitivity. In this paper, we demonstrate twofold FOV increase with the use of three FT input coils. We also show that it is possible to use a single atomic magnetometer and single acquisition channel to acquire three independent MRI signals by applying a frequency-encoding gradient along the direction of the detection array span. The approach can be generalized to more channels and can be critical for imaging applications of non-cryogenic ULF MRI where FOV needs to be large, including head, hand, spine, and whole-body imaging.

15.
IEEE Trans Appl Supercond ; 21(3): 465-468, 2011.
Article in English | MEDLINE | ID: mdl-21747638

ABSTRACT

Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification.

16.
J Magn Reson ; 207(1): 78-88, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20843715

ABSTRACT

Magnetic resonance imaging at microtesla fields is a promising imaging method that combines the pre-polarization technique and broadband signal reception by superconducting quantum interference device (SQUID) sensors to enable in vivo MRI at microtesla-range magnetic fields similar in strength to the Earth magnetic field. Despite significant advances in recent years, the potential of microtesla MRI for biomedical imaging is limited by its insufficient signal-to-noise ratio due to a relatively low sample polarization. Dynamic nuclear polarization (DNP) is a widely used approach that allows polarization enhancement by 2-4 orders of magnitude without an increase in the polarizing field strength. In this work, the first implementation of microtesla MRI with Overhauser DNP and SQUID signal detection is described. The first measurements of carbon-13 NMR spectra at microtesla fields are also reported. The experiments were performed at the measurement field of 96 µT, corresponding to Larmor frequency of 4 kHz for protons and 1 kHz for carbon-13. The Overhauser DNP was carried out at 3.5-5.7 mT fields using rf irradiation at 120 MHz. Objects for imaging included water phantoms and a cactus plant. Aqueous solutions of metabolically relevant sodium bicarbonate, pyruvate, alanine, and lactate, labeled with carbon-13, were used for NMR studies. All the samples were doped with TEMPO free radicals. The Overhauser DNP enabled nuclear polarization enhancement by factor as large as -95 for protons and as large as -200 for carbon-13, corresponding to thermal polarizations at 0.33 T and 1.1 T fields, respectively. These results demonstrate that SQUID-based microtesla MRI can be naturally combined with Overhauser DNP in one system, and that its signal-to-noise performance is greatly improved in this case. They also suggest that microtesla MRI can become an efficient tool for in vivo imaging of hyperpolarized carbon-13, produced by low-temperature dissolution DNP.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Algorithms , Carbon Radioisotopes/chemistry , Cyclic N-Oxides/chemistry , Electromagnetic Fields , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Nitrogen Oxides/chemistry , Signal Processing, Computer-Assisted
17.
IEEE Trans Appl Supercond ; 21(3): 489-492, 2010 Oct 09.
Article in English | MEDLINE | ID: mdl-21747637

ABSTRACT

Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding the magnetic noise of conductive materials, especially of magnetic shields based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have radio frequency shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems with complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies, knowledge of the noise correlation between sensors is as important as knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for arbitrary shaped shields and multiple sensor systems. The approach is efficient enough to be able to run on a single PC system and return results on a minute scale. With a multiple sensor system our approach calculates not only the noise for each sensor but also the noise correlation matrix between sensors. Here we will show how the algorithm can be implemented.

18.
J Magn Reson ; 194(1): 115-20, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18619876

ABSTRACT

One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method--SQUID-based microtesla MRI--can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 microT measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment--low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging--are practical.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Brain/physiology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Subtraction Technique , Humans , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity , Systems Integration
19.
Appl Opt ; 46(22): 5129-36, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17676123

ABSTRACT

We describe procedures for constructing inexpensive wave plates of desired retardation out of ordinary commercially available transparencies. Various relevant properties of the transparencies are investigated: the dependence of retardation on rotation of the film, tilt, wavelength, position, and temperature. A transparency is typically a multiple-order wave plate with the difference of in-plane refractive indices of approximately 0.07 and a temperature dependence of retardation approximately 0.02 rad/K. Constructing wave plates out of combinations of transparency sheets is also explored.

SELECTION OF CITATIONS
SEARCH DETAIL
...