Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicology ; 393: 90-101, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29108742

ABSTRACT

Chronic low level exposure to organophosphate (OPs) pesticides in adulthood has been linked to adverse neurobehavioural deficits and psychological disorder symptoms, although this remains a contentious issue. The OP-induced biological changes that could underlie these effects are unclear. We assessed gene expression changes following chronic low level exposure to diazinon, a pesticide with a high dietary exposure risk. Adult male rats were orally exposed to diazinon (0, 1, 2mg/kg, 5days a week for 12 weeks). After 4 weeks, marble burying behaviour was lower in diazinon exposed rats than vehicle exposed rats; this difference persisted for 8 weeks. Chronic diazinon exposure did not significantly inhibit acetylcholinesterase activity, the primary mechanism of action of high level OPs. Affymetrix GeneChip® HT RG-230 PM Arrays were used for gene profiling followed by Ingenuity Pathway analysis. In the hippocampus, the most significant gene expression changes caused by OP exposure were associated with Psychological Disorders, and Cell-To-Cell Signalling and Interaction functions. Genes encoding the AMPA3 glutamate receptor, glutaminase, dopamine transporter and tyrosine hydroxylase were up-regulated, whereas the gene encoding the GABAB1 receptor was down-regulated. In the dorsal raphe nucleus, genes associated with development and the Psychological Disorders function were significantly affected, including the up-regulation of the gene encoding the α1b-adrenoceptor, the major driver of serotoninergic (5-HT) neuronal activity. These data indicate that chronic exposure to diazinon in adulthood, below the threshold to inhibit acetylcholinesterase, stimulates glutamatergic, dopaminergic and serotonergic synaptic transmission which may underlie adverse neurological outcomes.


Subject(s)
Brain/drug effects , Diazinon/toxicity , Insecticides/toxicity , Mental Disorders/genetics , Acetylcholinesterase/blood , Acetylcholinesterase/metabolism , Animals , Behavior, Animal , Brain/metabolism , Butyrylcholinesterase/blood , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/toxicity , Dopamine Plasma Membrane Transport Proteins/genetics , Gene Expression/drug effects , Glutaminase/genetics , Male , Rats , Receptors, AMPA/genetics , Synaptic Transmission , Tyrosine 3-Monooxygenase/genetics
2.
Chem Biol Interact ; 245: 82-9, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26721196

ABSTRACT

The neurotransmitter serotonin (5-HT) is involved in mood disorder aetiology and it has been reported that (organophosphate) OP exposure affects 5-HT turnover. The aim of this study was to elucidate the mechanism underlying OP effects on the adult 5-HT system. First, acute in vivo administration of the OP diazinon (0, 1.3, 13 or 39 mg/kg i.p.) to male Hooded Lister rats inhibited the activity of the cholinergic enzyme acetylcholinesterase in blood and in the hippocampus, dorsal raphe nucleus (DRN), striatum and prefrontal cortex. Diazinon-induced cholinesterase inhibition was greatest in the DRN, the brain's major source of 5-HT neurones. Second, acute in vivo diazinon exposure (0 or 39 mg/kg i.p.) increased the basal firing rate of DRN neurones measured ex vivo in brain slices. The excitatory responses of DRN neurones to α1-adrenoceptor or AMPA/kainate receptor activation were not affected by in vivo diazinon exposure but the inhibitory response to 5-HT was attenuated, indicating 5-HT1A autoreceptor down-regulation. Finally, direct application of the diazinon metabolite diazinon oxon to naive rat brain slices increased the firing rate of DRN 5-HT neurones, as did chlorpyrifos-oxon, indicating the effect was not unique to diazinon. The oxon-induced augmentation of firing was blocked by the nicotinic acetylcholine receptor antagonist mecamylamine and the AMPA/kainate glutamate receptor antagonist DNQX. Together these data indicate that 1) acute OP exposure inhibits DRN cholinesterase, leading to acetylcholine accumulation, 2) the acetylcholine activates nicotinic receptors on 5-HT neurones and also on glutamatergic neurones, thus releasing glutamate and activating 5-HT neuronal AMPA/kainate receptors 3) the increase in 5-HT neuronal activity, and resulting 5-HT release, may lead to 5-HT1A autoreceptor down-regulation. This mechanism may be involved in the reported increase in risk of developing anxiety and depression following occupational OP exposure.


Subject(s)
Brain/drug effects , Chlorpyrifos/adverse effects , Cholinesterase Inhibitors/adverse effects , Diazinon/adverse effects , Neurons/drug effects , Pesticides/adverse effects , Serotonin/metabolism , Acetylcholinesterase/metabolism , Animals , Anxiety/etiology , Brain/metabolism , Depression/etiology , Male , Neurons/metabolism , Rats
3.
Neurotoxicology ; 50: 149-56, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26297601

ABSTRACT

Occupational exposure to organophosphate (OPs) pesticides is reported to increase in the risk of developing anxiety and depression. Preclinical studies using OP levels, which inhibit acetylcholinesterase activity, support the clinical observations, but little is known of the effects of exposure below this threshold. We examined the effects of low level OP exposure on behaviours and neurochemistry associated with affective disorders. Adult rats were administered either diazinon (1 mg/kg i.p.) which is present in sheep dip and flea collars, chlorpyrifos (1 mg/kg i.p.) which is present in crop sprays, or vehicle for 5 days. OP exposure did not affect acetylcholinesterase activity (blood, cerebellum, caudate putamen, hippocampus, prefrontal cortex), anhedonia-like behaviour (sucrose preference), working memory (novel object recognition), locomotor activity or anxiety-like behaviour in the open field arena. In contrast OP exposure attenuated marble burying behaviour, an ethological measure of anxiety. The diazinon-induced reduction in marble burying persisted after exposure cessation. In comparison to vehicle, dopamine levels were lowered by chlorpyrifos, but not diazinon. 5-HT levels and turnover were unaffected by OP exposure. However, 5-HT transporter expression was reduced by diazinon suggesting subtle changes in 5-HT transmission. These data indicate exposure to occupational and domestic OPs, below the threshold to inhibit acetylcholinesterase, can subtly alter behaviour and neurochemistry.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety/physiopathology , Chlorpyrifos/therapeutic use , Diazinon/therapeutic use , Exploratory Behavior/drug effects , Acetylcholinesterase/metabolism , Analysis of Variance , Animals , Brain/drug effects , Brain/metabolism , Chlorpyrifos/pharmacology , Chromatography, High Pressure Liquid , Diazinon/pharmacology , Disease Models, Animal , Electrochemical Techniques , Food Preferences/drug effects , Male , Memory, Short-Term/drug effects , Motor Activity/drug effects , Neurotransmitter Agents/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...