Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1178337, 2023.
Article in English | MEDLINE | ID: mdl-37143666

ABSTRACT

Macrophages are immune cells that originate from embryogenesis or from the differentiation of monocytes. They can adopt numerous phenotypes depending on their origin, tissue distribution and in response to different stimuli and tissue environment. Thus, in vivo, macrophages are endowed with a continuum of phenotypes that are rarely strictly pro-inflammatory or anti-inflammatory and exhibit a broad expression profile that sweeps over the whole polarization spectrum. Schematically, three main macrophage subpopulations coexist in human tissues: naïve macrophages also called M0, pro-inflammatory macrophages referred as M1 macrophages, and anti-inflammatory macrophages also known as M2 macrophages. Naïve macrophages display phagocytic functions, recognize pathogenic agents, and rapidly undergo polarization towards pro or anti-inflammatory macrophages to acquire their full panel of functions. Pro-inflammatory macrophages are widely involved in inflammatory response, during which they exert anti-microbial and anti-tumoral functions. By contrast, anti-inflammatory macrophages are implicated in the resolution of inflammation, the phagocytosis of cell debris and tissue reparation following injuries. Macrophages also play important deleterious or beneficial roles in the initiation and progression of different pathophysiological settings including solid and hematopoietic cancers. A better understanding of the molecular mechanisms involved in the generation, activation and polarization of macrophages is a prerequisite for the development of new therapeutic strategies to modulate macrophages functions in pathological situations.


Subject(s)
Macrophages , Neoplasms , Humans , Monocytes , Phagocytosis , Neoplasms/metabolism , Anti-Inflammatory Agents/pharmacology
2.
Oncoimmunology ; 11(1): 2015859, 2022.
Article in English | MEDLINE | ID: mdl-35251769

ABSTRACT

Macrophages are widely distributed innate immune cells that play an indispensable role in a variety of physiologic and pathologic processes, including organ development, host defense, acute and chronic inflammation, solid and hematopoietic cancers. Beyond their inextricable role as conveyors of programmed cell death, we have previously highlighted that caspases exert non-apoptotic functions, especially during the differentiation of monocyte-derived cells in response to CSF-1. Here, we found that non-canonic cleavages of caspases, reflecting their activation, are maintained during IL-4-induced monocyte-derived macrophages polarization. Moreover, Emricasan, a pan-caspase inhibitor that demonstrated promising preclinical activity in various diseases and safely entered clinical testing for the treatment of liver failure, prevents the generation and the anti-inflammatory polarization of monocyte-derived macrophages ex vivo. Interestingly, caspase inhibition also triggered the reprogramming of monocyte-derived cells evidenced by RNA sequencing. Taken together, our findings position Emricasan as a potential alternative to current therapies for reprogramming macrophages in diseases driven by monocyte-derived macrophages.


Subject(s)
Caspases , Macrophages , Caspase Inhibitors/metabolism , Caspase Inhibitors/pharmacology , Caspases/metabolism , Cell Differentiation , Humans , Inflammation/metabolism , Macrophages/metabolism
4.
Int J Mol Sci ; 21(1)2019 12 25.
Article in English | MEDLINE | ID: mdl-31881723

ABSTRACT

Myelodysplastic syndrome (MDS) defines a group of heterogeneous hematologic malignancies that often progresses to acute myeloid leukemia (AML). The leading treatment for high-risk MDS patients is azacitidine (Aza, Vidaza®), but a significant proportion of patients are refractory and all patients eventually relapse after an undefined time period. Therefore, new therapies for MDS are urgently needed. We present here evidence that acadesine (Aca, Acadra®), a nucleoside analog exerts potent anti-leukemic effects in both Aza-sensitive (OCI-M2S) and resistant (OCI-M2R) MDS/AML cell lines in vitro. Aca also exerts potent anti-leukemic effect on bone marrow cells from MDS/AML patients ex-vivo. The effect of Aca on MDS/AML cell line proliferation does not rely on apoptosis induction. It is also noteworthy that Aca is efficient to kill MDS cells in a co-culture model with human medullary stromal cell lines, that mimics better the interaction occurring in the bone marrow. These initial findings led us to initiate a phase I/II clinical trial using Acadra® in 12 Aza refractory MDS/AML patients. Despite a very good response in one out 4 patients, we stopped this trial because the highest Aca dose (210 mg/kg) caused serious renal side effects in several patients. In conclusion, the side effects of high Aca doses preclude its use in patients with strong comorbidities.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Ribonucleosides/therapeutic use , Aged , Aminoimidazole Carboxamide/pharmacology , Aminoimidazole Carboxamide/therapeutic use , Apoptosis/drug effects , Azacitidine/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Clinical Trials as Topic , Drug Resistance, Neoplasm/drug effects , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Myelodysplastic Syndromes/pathology , Recurrence , Ribonucleosides/pharmacology , Treatment Failure
5.
Leukemia ; 33(6): 1501-1513, 2019 06.
Article in English | MEDLINE | ID: mdl-30607021

ABSTRACT

Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy. During CMA, the HSC70 chaperone carries target proteins endowed with a KFERQ-like motif to the lysosomal receptor LAMP2A, which then translocate them into lysosomes for degradation. In the present study, we scrutinized the mechanisms underlying the response and resistance to Azacytidine (Aza) in MDS/AML cell lines and bone marrow CD34+ blasts from MDS/AML patients. In engineered Aza-resistant MDS cell lines and some AML cell lines, we identified a profound defect in CMA linked to the absence of LAMP2A. LAMP2 deficiency was responsible for Aza resistance and hypersensitivity to lysosome and autophagy inhibitors. Accordingly, gain of function of LAMP2 in deficient cells or loss of function in LAMP2-expressing cells rendered them sensitive or resistant to Aza, respectively. A strict correlation was observed between the absence of LAMP2, resistance to Aza and sensitivity to lysosome inhibitors. Low levels of LAMP2 expression in CD34+ blasts from MDS/AML patients correlated with lack of sensitivity to Aza and were predictive of poor overall survival. We propose that CD34+/LAMP2Low patients at diagnosis or who become CD34+/LAMP2Low during the course of treatment with Aza might benefit from a lysosome inhibitor already used in the clinic.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Azacitidine/pharmacology , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Myeloid, Acute/pathology , Lysosomal-Associated Membrane Protein 2/metabolism , Aged , Aged, 80 and over , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Female , Follow-Up Studies , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Male , Middle Aged , Prognosis , Survival Rate , Tumor Cells, Cultured
6.
Oncotarget ; 9(13): 10920-10933, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29541386

ABSTRACT

Polo-like kinases (Plks) define a highly conserved family of Ser/Thr kinases with crucial roles in the regulation of cell division. Here we show that Plk1 is cleaved by caspase 3, but not by other caspases in different hematopoietic cell lines treated with competitive inhibitors of the ATP-binding pocket of Plk1. Intriguingly, Plk1 was not cleaved in cells treated with Rigosertib, a non-competitive inhibitor of Plk1, suggesting that binding of the inhibitor to the ATP binding pocket of Plk1 triggers a conformational change and unmasks a cryptic caspase 3 cleavage site on the protein. Cleavage occurs after Asp-404 in a DYSD/K sequence and separates the kinase domain from the two PBDs of Plk1. All Plk1 inhibitors triggered G2/M arrest, activation of caspases 2 and 3, polyploidy, multiple nuclei and mitotic catastrophe, albeit at higher concentrations in the case of Rigosertib. Upon BI-2536 treatment, Plk1 cleavage occurred only in the cytosolic fraction and cleaved Plk1 accumulated in this subcellular compartment. Importantly, the cleaved N-Terminal fragment of Plk1 exhibited a higher enzymatic activity than its non-cleaved counterpart and accumulated into the cytoplasm conversely to the full length and the C-Terminal Plk1 fragments that were found essentially into the nucleus. Finally, the DYSD/K cleavage site was highly conserved during evolution from c. elegans to human. In conclusion, we described herein for the first time a specific cleavage of Plk1 by caspase 3 following treatment of cancer cells with ATP-competitive inhibitors of Plk1.

SELECTION OF CITATIONS
SEARCH DETAIL
...