Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 289: 121784, 2022 10.
Article in English | MEDLINE | ID: mdl-36103781

ABSTRACT

Brain computer interfaces (BCIs), including penetrating microelectrode arrays, enable both recording and stimulation of neural cells. However, device implantation inevitably causes injury to brain tissue and induces a foreign body response, leading to reduced recording performance and stimulation efficacy. Astrocytes in the healthy brain play multiple roles including regulating energy metabolism, homeostatic balance, transmission of neural signals, and neurovascular coupling. Following an insult to the brain, they are activated and gather around the site of injury. These reactive astrocytes have been regarded as one of the main contributors to the formation of a glial scar which affects the performance of microelectrode arrays. This study investigates the dynamics of astrocytes within the first 2 weeks after implantation of an intracortical microelectrode into the mouse brain using two-photon microscopy. From our observation astrocytes are highly dynamic during this period, exhibiting patterns of process extension, soma migration, morphological activation, and device encapsulation that are spatiotemporally distinct from other glial cells, such as microglia or oligodendrocyte precursor cells. This detailed characterization of astrocyte reactivity will help to better understand the tissue response to intracortical devices and lead to the development of more effective intervention strategies to improve the functional performance of neural interfacing technology.


Subject(s)
Astrocytes , Gliosis , Animals , Astrocytes/metabolism , Electrodes, Implanted , Gliosis/metabolism , Mice , Microelectrodes , Microglia , Neuroglia
2.
J Bioenerg Biomembr ; 51(1): 41-51, 2019 02.
Article in English | MEDLINE | ID: mdl-30302619

ABSTRACT

Olfactory sensory neurons (OSNs) are generated throughout life from progenitor cells in the olfactory epithelium. OSN axons project in an odorant receptor-specific manner to the olfactory bulb (OB), forming an ordered array of glomeruli where they provide sensory input to OB neurons. The tetracycline transactivator (tTA) system permits developmental stage-specific expression of reporter genes in OSNs and has been widely used for structural and functional studies of the development and plasticity of the mouse olfactory system. However, the cellular ages at which OSNs stop expressing reporters driven by the immature OSN-specific Gγ8-tTA driver line and begin to express reporters driven by the mature OSN-specific OMP-tTA driver line have not been directly determined. We pulse-labeled terminally dividing cells in the olfactory epithelium of 28-day-old (P28) mice with EdU and analyzed EdU labeling in OSNs expressing fluorescent reporter proteins under control of either the Gγ8-tTA or OMP-tTA driver line 5-14 days later. Expression of OMP-tTA-driven reporters began in 6-day-old OSNs, while the vast majority of newborn OSNs did not express Gγ8-tTA-driven fluorescent proteins beyond 8 days of cellular age. Surprisingly, we also found a low survival rate for P28-born OSNs, very few of which survived for more than 14 days. We propose that OSN survival requires the formation of stable synaptic connections and hence may be dependent on organismal age.


Subject(s)
Olfactory Mucosa/cytology , Olfactory Receptor Neurons/physiology , Age Factors , Animals , Cell Death , Cell Differentiation , Mice , Synapses
SELECTION OF CITATIONS
SEARCH DETAIL
...