Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Fluids Barriers CNS ; 17(1): 38, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32493346

ABSTRACT

BACKGROUND: The United States faces a national crisis involving opioid medications, where currently more than 130 people die every day. To combat this epidemic, a better understanding is needed of how opioids penetrate into the central nervous system (CNS) to facilitate pain relief and, potentially, result in addiction and/or misuse. Animal models, however, are a poor predictor of blood-brain barrier (BBB) transport and CNS drug penetration in humans, and many traditional 2D cell culture models of the BBB and neurovascular unit have inadequate barrier function and weak or inappropriate efflux transporter expression. Here, we sought to better understand opioid transport mechanisms using a simplified microfluidic neurovascular unit (NVU) model consisting of human brain microvascular endothelial cells (BMECs) co-cultured with astrocytes. METHODS: Human primary and induced pluripotent stem cell (iPSC)-derived BMECs were incorporated into a microfluidic NVU model with several technical improvements over our previous design. Passive barrier function was assessed by permeability of fluorescent dextrans with varying sizes, and P-glycoprotein function was assessed by rhodamine permeability in the presence or absence of inhibitors; quantification was performed with a fluorescent plate reader. Loperamide, morphine, and oxycodone permeability was assessed in the presence or absence of P-glycoprotein inhibitors and cortisol; quantification was performed with mass spectrometry. RESULTS: We first report technical and methodological optimizations to our previously described microfluidic model using primary human BMECs, which results in accelerated barrier formation, decreased variability, and reduced passive permeability relative to Transwell models. We then demonstrate proper transport and efflux of loperamide, morphine, and oxycodone in the microfluidic NVU containing BMECs derived from human iPSCs. We further demonstrate that cortisol can alter permeability of loperamide and morphine in a divergent manner. CONCLUSIONS: We reveal a novel role for the stress hormone cortisol in modulating the transport of opioids across the BBB, which could contribute to their abuse or overdose. Our updated BBB model represents a powerful tool available to researchers, clinicians, and drug manufacturers for understanding the mechanisms by which opioids access the CNS.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Astrocytes/physiology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/physiology , Endothelial Cells/physiology , Hydrocortisone/metabolism , Induced Pluripotent Stem Cells/physiology , Models, Neurological , Astrocytes/drug effects , Cells, Cultured , Coculture Techniques , Endothelial Cells/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Microvessels/cytology
2.
Drug Metab Dispos ; 48(2): 93-105, 2020 02.
Article in English | MEDLINE | ID: mdl-31771949

ABSTRACT

Organic cation transporter 1 (OCT1) plays a role in hepatic uptake of drugs, affecting in vivo exposure, distinguished primarily through pharmacogenetics of the SLC22A1 gene. The role of OCT1 in vivo has not been confirmed, however, via drug-drug interactions that similarly affect exposure. In the current research, we used Oct1/2 knockout mice to assess the role of Oct1 in hepatic clearance and liver partitioning of clinical substrates and assess the model for predicting an effect of OCT1 function on pharmacokinetics in humans. Four OCT1 substrates (sumatriptan, fenoterol, ondansetron, and tropisetron) were administered to wild-type and knockout mice, and plasma, tissue, and urine were collected. Tissue transporter expression was evaluated using liquid chromatography-mass spectrometry. In vitro, uptake of all compounds in human and mouse hepatocytes and human OCT1- and OCT2-expressing cells was evaluated. The largest effect of knockout was on hepatic clearance and liver partitioning of sumatriptan (2- to 5-fold change), followed by fenoterol, whereas minimal changes in the pharmacokinetics of ondansetron and tropisetron were observed. This aligned with uptake in mouse hepatocytes, in which inhibition of uptake of sumatriptan and fenoterol into mouse hepatocytes by an OCT1 inhibitor was much greater compared with ondansetron and tropisetron. Conversely, inhibition of all four substrates was evident in human hepatocytes, in line with reported clinical pharmacogenetic data. These data confirm the role of Oct1 in the hepatic uptake of the four OCT1 substrates and elucidate species differences in OCT1-mediated hepatocyte uptake that should be considered when utilizing the model to predict effects in humans. SIGNIFICANCE STATEMENT: Studies in carriers of SLC22A1 null variants indicate a role of organic cation transporter 1 (OCT1) in the hepatic uptake of therapeutic agents, although OCT1-mediated drug-drug interactions have not been reported. This work used Oct1/2 knockout mice to confirm the role of Oct1 in the hepatic clearance and liver partitioning in mice for OCT1 substrates with reported pharmacogenetic effects. Species differences observed in mouse and human hepatocyte uptake clarify limitations of the knockout model for predicting exposure changes in humans for some OCT1 substrates.


Subject(s)
Hepatocytes/metabolism , Liver/metabolism , Octamer Transcription Factor-1/metabolism , Organic Cation Transporter 2/metabolism , Animals , Biological Transport/physiology , Cell Line , Drug Interactions/physiology , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Ondansetron/metabolism , Species Specificity , Tropisetron/metabolism
3.
Pharmacol Res Perspect ; 7(4): e00502, 2019 08.
Article in English | MEDLINE | ID: mdl-31333846

ABSTRACT

The enterohepatic circulation (EHC) of drugs is often the result of the direct glucuronidation, excretion of the metabolite into bile, followed by hydrolysis to the aglycone by the gut microbiome and finally reabsorption of drug into the systemic circulation. The aim of present study to identify key factors in determining the EHC in dog for canagliflozin and DPTQ, two compounds cleared by UDP-glucuronosyltransferase (UGT) mediated O-alkyl glucuronidation and cytochrome P450 (P450) mediated oxidation. The pharmacokinetic profiles of the drugs were compared between bile duct cannulated (BDC) and intact beagle dogs after a single intravenous administration. A long terminal elimination phase was observed for DPTQ but not for canagliflozin in intact dogs, while this long terminal half-life was not seen in BDC animals, suggesting the EHC of DPTQ. Quantification of parent drugs and glucuronide metabolites in bile, urine and feces indicated low recovery of parent in bile and urine and low recovery of conjugated metabolites in urine for both drugs, while biliary excretion of these glucuronide metabolites in BDC dog were low for canagliflozin but much higher for DPTQ. The increased fecal recovery of parent drug in intact dog and the lack of glucuronide metabolites suggested the hydrolysis of DPTQ-glucuronides by gut microbiome. Subsequent characterization of in vitro hepatic metabolism and permeability properties indicated the hepatic fraction metabolized by UGT, hydrolysis of metabolites, and reabsorption of the aglycone were key factors in determining the EHC of DPTQ.


Subject(s)
Bile Ducts/chemistry , Canagliflozin/administration & dosage , Glucuronides/analysis , Isoquinolines/administration & dosage , Administration, Intravenous , Animals , Canagliflozin/pharmacokinetics , Dogs , Enterohepatic Circulation , Feces/chemistry , Half-Life , Isoquinolines/pharmacokinetics , Male , Urine/chemistry
4.
Mol Pharm ; 15(8): 3060-3068, 2018 08 06.
Article in English | MEDLINE | ID: mdl-29927611

ABSTRACT

The organic anion-transporting polypeptide 1B1 transporter belongs to the solute carrier superfamily and is highly expressed at the basolateral membrane of hepatocytes. Several clinical studies show drug-drug interactions involving OATP1B1, thereby prompting the International Transporter Consortium to label OATP1B1 as a critical transporter that can influence a compound's disposition. To examine OATP1B1 inhibition early in the drug discovery process, we established a medium-throughput concentration-dependent OATP1B1 assay. To create an in silico OATP1B1 inhibition model, deliberate in vitro assay enrichment was performed with publically known OATP1B1 inhibitors, noninhibitors, and compounds from our own internal chemistry. To date, approximately 1200 compounds have been tested in the assay with 60:40 distribution between noninhibitors and inhibitors. Bagging, random forest, and support vector machine fingerprint (SVM-FP) quantitative structure-activity relationship classification models were created, and each method showed positive and negative predictive values >90%, sensitivity >80%, specificity >95%, and Matthews correlation coefficient >0.8 on a prospective test set indicating the ability to distinguish inhibitors from noninhibitors. A SVMF-FP regression model was also created that showed an R2 of 0.39, Spearman's rho equal to 0.76, and was capable of predicting 69% of the prospective test set within the experimental variability of the assay (3-fold). In addition to the in silico quantitative structure-activity relationship (QSAR) models, physicochemical trends were examined to provide structure activity relationship guidance to early discovery teams. A JMP partition tree analysis showed that among the compounds with calculated logP >3.5 and ≥1 negatively charged atom, 94% were identified as OATP1B1 inhibitors. The combination of the physicochemical trends along with an in silico QSAR model provides discovery project teams a valuable tool to identify and address drug-drug interaction liability due to OATP1B1 inhibition.


Subject(s)
Drug Discovery/methods , Liver-Specific Organic Anion Transporter 1/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Biological Assay/methods , Chemistry, Pharmaceutical , Computer Simulation , Drug Interactions , HEK293 Cells , Humans , Liver-Specific Organic Anion Transporter 1/chemistry , Liver-Specific Organic Anion Transporter 1/metabolism , Models, Chemical , Small Molecule Libraries/chemistry , Structure-Activity Relationship
5.
J Chem Inf Model ; 56(11): 2225-2233, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27684523

ABSTRACT

We report development and prospective validation of a QSAR model of the unbound brain-to-plasma partition coefficient, Kp,uu,brain, based on the in-house data set of ∼1000 compounds. We discuss effects of experimental variability, explore the applicability of both regression and classification approaches, and evaluate a novel, model-within-a-model approach of including P-glycoprotein efflux prediction as an additional variable. When tested on an independent test set of 91 internal compounds, incorporation of P-glycoprotein efflux information significantly improves the model performance resulting in an R2 of 0.53, RMSE of 0.57, Spearman's Rho correlation coefficient of 0.73, and qualitative prediction accuracy of 0.8 (kappa = 0.6). In addition to improving the performance, one of the key advantages of this approach is the larger chemical space coverage provided indirectly through incorporation of the in vitro, higher throughput data set that is 4 times larger than the in vivo data set.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Brain/metabolism , Quantitative Structure-Activity Relationship , ATP Binding Cassette Transporter, Subfamily B, Member 1/blood , Animals , Male , Mice , Permeability , Protein Transport
6.
Bioorg Med Chem ; 24(17): 3918-3931, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27301678

ABSTRACT

Extracorporeal photopheresis (ECP) has been used successfully in the treatment of erythrodermic cutaneous T cell lymphoma (CTCL), and other T cell-mediated disorders. Not all patients obtain a significant or durable response from ECP. The design of a selective photosensitizer that spares desirable lymphocytes while targeting malignant T cells may promote cytotoxic T cell responses and improve outcomes after ECP. A series of selenorhodamines built with variations of the Texas red core targeted the mitochondria of malignant T cells, were phototoxic to malignant T cells presumably via their ability to generate singlet oxygen, and were transported by P-glycoprotein (P-gp). To determine the selectivity of the photosensitizers in the ECP milieu, staphylococcal enterotoxin B (SEB)-stimulated and non-stimulated human lymphocytes were combined with HUT-78 cells (a CTCL) to simulate ECP. The amide-containing analogues of the selenorhodamines were transported more rapidly than the thioamide analogues in monolayers of MDCKII-MDR1 cells and, consequently, were extruded more rapidly from P-gp-expressing T cells than the corresponding thioamide analogues. Selenorhodamine 6 with the Texas red core and a piperidylamide functionality was phototoxic to >90% of malignant T cells while sparing >60% of both stimulated and non-stimulated T cells. In the resting T cells, (63±7)% of the CD4+ T cell compartment, and (78±2.5)% of the CD8+ cytotoxic T cell population were preserved, resulting in an enrichment of healthy and cytotoxic T cells after photodepletion.


Subject(s)
Organoselenium Compounds/pharmacology , Photopheresis , Photosensitizing Agents/pharmacology , Rhodamines/pharmacology , T-Lymphocytes/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cell Line, Tumor , Humans , Light , Lymphoma , Mitochondria/metabolism , Organoselenium Compounds/chemical synthesis , Photosensitizing Agents/chemical synthesis , Rhodamines/chemical synthesis , T-Lymphocytes/metabolism , Verapamil/pharmacology
7.
Drug Metab Dispos ; 43(9): 1360-71, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26149830

ABSTRACT

Effective treatments for primary brain tumors and brain metastases represent a major unmet medical need. Targeting the CDK4/CDK6-cyclin D1-Rb-p16/ink4a pathway using a potent CDK4 and CDK6 kinase inhibitor has potential for treating primary central nervous system tumors such as glioblastoma and some peripheral tumors with high incidence of brain metastases. We compared central nervous system exposures of two orally bioavailable CDK4 and CDK6 inhibitors: abemaciclib, which is currently in advanced clinical development, and palbociclib (IBRANCE; Pfizer), which was recently approved by the U.S. Food and Drug Administration. Abemaciclib antitumor activity was assessed in subcutaneous and orthotopic glioma models alone and in combination with standard of care temozolomide (TMZ). Both inhibitors were substrates for xenobiotic efflux transporters P-glycoprotein and breast cancer resistant protein expressed at the blood-brain barrier. Brain Kp,uu values were less than 0.2 after an equimolar intravenous dose indicative of active efflux but were approximately 10-fold greater for abemaciclib than palbociclib. Kp,uu increased 2.8- and 21-fold, respectively, when similarly dosed in P-gp-deficient mice. Abemaciclib had brain area under the curve (0-24 hours) Kp,uu values of 0.03 in mice and 0.11 in rats after a 30 mg/kg p.o. dose. Orally dosed abemaciclib significantly increased survival in a rat orthotopic U87MG xenograft model compared with vehicle-treated animals, and efficacy coincided with a dose-dependent increase in unbound plasma and brain exposures in excess of the CDK4 and CDK6 Ki values. Abemaciclib increased survival time of intracranial U87MG tumor-bearing rats similar to TMZ, and the combination of abemaciclib and TMZ was additive or greater than additive. These data show that abemaciclib crosses the blood-brain barrier and confirm that both CDK4 and CDK6 inhibitors reach unbound brain levels in rodents that are expected to produce enzyme inhibition; however, abemaciclib brain levels are reached more efficiently at presumably lower doses than palbociclib and are potentially on target for a longer period of time.


Subject(s)
Aminopyridines/pharmacology , Benzimidazoles/pharmacology , Brain Neoplasms/drug therapy , Brain/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Glioblastoma/drug therapy , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Aminopyridines/administration & dosage , Aminopyridines/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzimidazoles/administration & dosage , Benzimidazoles/therapeutic use , Brain Neoplasms/pathology , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Dogs , Female , Glioblastoma/pathology , Madin Darby Canine Kidney Cells , Male , Mice , Piperazines/administration & dosage , Piperazines/therapeutic use , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/therapeutic use , Pyridines/administration & dosage , Pyridines/therapeutic use , Rats , Temozolomide , Xenograft Model Antitumor Assays
8.
J Med Chem ; 57(20): 8622-34, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25250825

ABSTRACT

We examined a series of selenorhodamines with amide and thioamide functionality at the 5-position of a 9-(2-thienyl) substituent on the selenorhodamine core for their potential as photosensitizers for photodynamic therapy (PDT) in P-glycoprotein (P-gp) expressing cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their uptake into Colo-26 cells in the absence or presence of verapamil, for their dark and phototoxicity toward Colo-26 cells, for their rates of transport in monolayers of multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells, and for their colocalization with mitochondrial specific agents in Colo-26 cells. Thioamide derivatives 16b and 18b were more effective photosensitizers than amide derivatives 15b and 17b. Selenorhodamine thioamides 16b and 18b were useful in a combination therapy to treat Colo-26 cells in vitro: a synergistic therapeutic effect was observed when Colo-26 cells were exposed to PDT and treatment with the cancer drug doxorubicin.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Organoselenium Compounds/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Chemistry Techniques, Synthetic , Dogs , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor/methods , Humans , Madin Darby Canine Kidney Cells/drug effects , Mice , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry , Photochemotherapy/methods , Photosensitizing Agents/chemical synthesis , Rhodamines/pharmacokinetics , Singlet Oxygen/metabolism , Spectrometry, Fluorescence , Toxicity Tests , Verapamil/pharmacology
9.
Mol Pharm ; 10(4): 1249-61, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23363443

ABSTRACT

In silico tools are regularly utilized for designing and prioritizing compounds to address challenges related to drug metabolism and pharmacokinetics (DMPK) during the process of drug discovery. P-Glycoprotein (P-gp) is a member of the ATP-binding cassette (ABC) transporters with broad substrate specificity that plays a significant role in absorption and distribution of drugs that are P-gp substrates. As a result, screening for P-gp transport has now become routine in the drug discovery process. Typically, bidirectional permeability assays are employed to assess in vitro P-gp efflux. In this article, we use P-gp as an example to illustrate a well-validated methodology to effectively integrate in silico and in vitro tools to identify and resolve key barriers during the early stages of drug discovery. A detailed account of development and application of in silico tools such as simple guidelines based on physicochemical properties and more complex quantitative structure-activity relationship (QSAR) models is provided. The tools were developed based on structurally diverse data for more than 2000 compounds generated using a robust P-gp substrate assay over the past several years. Analysis of physicochemical properties revealed a significantly lower proportion (<10%) of P-gp substrates among the compounds with topological polar surface area (TPSA) <60 Å(2) and the most basic cpKa <8. In contrast, this proportion of substrates was greater than 75% for compounds with TPSA >60 Å(2) and the most basic cpKa >8. Among the various QSAR models evaluated to predict P-gp efflux, the Bagging model provided optimum prediction performance for prospective validation based on chronological test sets. Four sequential versions of the model were built with increasing numbers of compounds to train the models as new data became available. Except for the first version with the smallest training set, the QSAR models exhibited robust prediction profiles with positive prediction values (PPV) and negative prediction values (NPV) exceeding 80%. The QSAR model demonstrated better concordance with the manual P-gp substrate assay than an automated P-gp substrate screen. The in silico and the in vitro tools have been effectively integrated during early stages of drug discovery to resolve P-gp-related challenges exemplified by several case studies. Key learning based on our experience with P-gp can be widely applicable across other DMPK-related challenges.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Drug Discovery/methods , Animals , Cell Membrane Permeability , Chemistry, Pharmaceutical/methods , Chemistry, Physical/methods , Computer Simulation , Dogs , Drug Design , Humans , Hydrogen Bonding , Madin Darby Canine Kidney Cells , Models, Chemical , Quantitative Structure-Activity Relationship , Reproducibility of Results , Substrate Specificity
10.
Bioorg Med Chem ; 20(14): 4290-302, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22727780

ABSTRACT

Twelve thiorhodamine derivatives have been examined for their ability to stimulate the ATPase activity of purified human P-glycoprotein (P-gp)-His(10), to promote uptake of calcein AM and vinblastine into multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells, and for their rates of transport in monolayers of multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells. The thiorhodamine derivatives have structural diversity from amide and thioamide functionality (N,N-diethyl and N-piperidyl) at the 5-position of a 2-thienyl substituent on the thiorhodamine core and from diversity at the 3-amino substituent with N,N-dimethylamino, fused azadecalin (julolidyl), and fused N-methylcyclohexylamine (half-julolidyl) substituents. The julolidyl and half-julolidyl derivatives were more effective inhibitors of P-gp than the dimethylamino analogues. Amide-containing derivatives were transported much more rapidly than thioamide-containing derivatives.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Amides/chemistry , Rhodamines/chemistry , Thioamides/chemistry , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Biological Transport/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Fluoresceins/metabolism , Humans , Rhodamines/chemical synthesis , Rhodamines/pharmacology , Structure-Activity Relationship , Vinblastine/metabolism
11.
J Med Chem ; 55(10): 4683-99, 2012 May 24.
Article in English | MEDLINE | ID: mdl-22533905

ABSTRACT

Twenty-seven chalcogenopyrylium derivatives varying in the heteroatom of the pyrylium core and substituents at the 2-, 4-, and 6-positions were examined for their effect on human MRP1-mediated uptake of tritiated estradiol glucuronide into inside-out membrane vesicles, their affinity for and ability to stimulate the ATPase activity of purified human P-glycoprotein (P-gp)-His(10), and their ability to promote uptake of calcein AM and vinblastine in multidrug-resistant cells. Differences in their effects on MRP1 and P-gp activity were noted, and a second set of thiopyrylium compounds with systematic substituent changes was examined to refine these differences further. Derivatives with tert-butyl substituents in the 2- and 6-positions had the lowest inhibitory activity toward both transporters. Derivatives with thioamide functionality in the 4-position were more active against MRP1 than derivatives with amide functionality. Conversely, derivatives with amide functionality in the 4-position were more active in P-gp than derivatives with thioamide functionality.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Chalcogens , Heterocyclic Compounds, 3-Ring/chemical synthesis , Multidrug Resistance-Associated Proteins/metabolism , Animals , Biological Transport , Cell Membrane/drug effects , Cell Membrane/metabolism , Dogs , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , In Vitro Techniques , Structure-Activity Relationship
12.
J Med Chem ; 52(10): 3328-41, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19402665

ABSTRACT

We have examined 46 tetramethylrosamine/rhodamine derivatives with structural diversity in the heteroatom of the xanthylium core, the amino substituents of the 3- and 6-positions, and the alkyl, aryl, or heteroaryl group at the 9-substituent. These compounds were examined for affinity and ATPase stimulation in isolated MDR3 CL P-gp and human P-gp-His(10), for their ability to promote uptake of calcein AM and vinblastine in multidrug-resistant MDCKII-MDR1 cells, and for transport in monolayers of MDCKII-MDR1 cells. Thioamide 31-S gave K(M) of 0.087 microM in human P-gp. Small changes in structure among this set of compounds affected affinity as well as transport rate (or flux) even though all derivatives examined were substrates for P-gp. With isolated protein, tertiary amide groups dictate high affinity and high stimulation while tertiary thioamide groups give high affinity and inhibition of ATPase activity. In MDCKII-MDR1 cells, the tertiary thioamide-containing derivatives promote uptake of calcein AM and have very slow passive, absorptive, and secretory rates of transport relative to transport rates for tertiary amide-containing derivatives. Thioamide 31-S promoted uptake of calcein AM and inhibited efflux of vinblastine with IC(50)'s of approximately 2 microM in MDCKII-MDR1 cells.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Amides/pharmacology , Rhodamines/pharmacology , Thioamides/pharmacology , Adenosine Triphosphatases/drug effects , Amides/chemistry , Animals , Biological Transport , Cell Line , Dogs , Drug Resistance, Multiple , Fluoresceins/pharmacokinetics , Heterocyclic Compounds, 3-Ring , Humans , Kinetics , Protein Binding , Rhodamines/chemistry , Structure-Activity Relationship , Thioamides/chemistry , Vinblastine/pharmacokinetics
13.
Drug Metab Dispos ; 37(6): 1251-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19273529

ABSTRACT

Expression of breast cancer resistance protein (Bcrp) at the blood-brain barrier (BBB) has been revealed recently. To investigate comprehensively the potential role of Bcrp at the murine BBB, a chemically diverse set of model compounds (cimetidine, alfuzosin, dipyridamole, and LY2228820) was evaluated using a multiexperimental design. Bcrp1 stably transfected MDCKII cell monolayer transport studies demonstrated that each compound had affinity for Bcrp and that polarized transport by Bcrp was abolished completely by the Bcrp inhibitor chrysin. However, none of the compounds differed in brain uptake between Bcrp wild-type and knockout mice under either an in situ brain perfusion or a 24-h subcutaneous osmotic minipump continuous infusion experimental paradigm. In addition, alfuzosin and dipyridamole were shown to undergo transport by P-glycoprotein (P-gp) in an MDCKII-MDR1 cell monolayer model. Alfuzosin brain uptake was 4-fold higher in mdr1a(-/-) mice than in mdr1a(+/+) mice in in situ and in vivo studies, demonstrating for the first time that it undergoes P-gp-mediated efflux at the BBB. In contrast, P-gp had no effect on dipyridamole brain penetration in situ or in vivo. In fact, in situ BBB permeability of these solutes appeared to be primarily dependent on their lipophilicity in the absence of efflux transport, and in situ brain uptake clearance correlated with the intrinsic transcellular passive permeability from in vitro transport and cellular accumulation studies. In summary, Bcrp mediates in vitro transport of various compounds, but seems to play a minimal role at the BBB in vivo.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Biological Transport/drug effects , Blood-Brain Barrier/drug effects , Brain/drug effects , Neoplasm Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/genetics , Animals , Blood-Brain Barrier/physiology , Brain/physiology , Dose-Response Relationship, Drug , Drug Interactions , Drug Synergism , Male , Mice , Mice, Inbred C57BL , Multidrug Resistance-Associated Proteins/metabolism , Neoplasm Proteins/genetics , Osmotic Pressure , Quinazolines/pharmacology , Rats
14.
Bioorg Med Chem ; 16(22): 9745-56, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18849167

ABSTRACT

A series of chalcogenopyrylium dyes were evaluated as modulators/inhibitors of P-glycoprotein (Pgp). Their ability to inhibit verapamil (VER)-dependent ATPase activity (IC(50) values) in lipid-activated, mouse Cys-less mdr3 Pgp was determined. Their ability to promote calcein-AM (CAM) uptake in MDCKII-MDR1 cells and their capacity to be transported by Pgp in monolayers of MDCKII-MDR1 cells were also evaluated. The chalcogenopyrylium dyes promoted CAM uptake with values of EC(50) between 5 x 10(-6) and 3.5 x 10(-5)M and 7 of the 9 dyes examined in transport studies were substrates for Pgp with efflux ratios (P(BA/AB)) between 14 and 390. Binding of three compounds (1-S, 3-S, and 4-S) to Pgp was also assessed by fluorescence. These three thiopyrylium dyes showed increased fluorescence upon binding to Pgp, giving apparent binding constants, K(app), on the order of 10(-7) to 10(-6)M. Compound 8-Te was particularly intriguing since it appeared to influence Pgp at low micromolar concentrations as evidenced by its influence on VER-stimulated ATPase activity (IC(50) of 1.2 x 10(-6)M), CAM uptake (EC(50) of 5.4 x 10(-6)M), as well as [(3)H]-vinblastine transport by Pgp in cells (IC(50) of 4.3 x 10(-6)M) and within inside-out membrane vesicles (IC(50) of 9.6 x 10(-6)M). Yet, Pgp did not influence the distribution of 8-Te in MDCKII-MDR1 monolayers suggesting that 8-Te may bind to an allosteric site.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Chalcogens/chemistry , Fluorescent Dyes/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Adenosine Triphosphatases/metabolism , Animals , Biological Transport , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , Cell Membrane Permeability/drug effects , Cell Polarity , Cells, Cultured , Dogs , Drug Resistance, Multiple , Fluoresceins/chemistry , Fluoresceins/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Humans , Inhibitory Concentration 50 , Verapamil/chemical synthesis , Verapamil/chemistry , Verapamil/pharmacology
15.
Biochemistry ; 47(10): 3294-307, 2008 Mar 11.
Article in English | MEDLINE | ID: mdl-18275155

ABSTRACT

The multidrug efflux pump P-glycoprotein (Pgp) couples drug transport to ATP hydrolysis. Previously, using a synthetic library of tetramethylrosamine ( TMR) analogues, we observed significant variation in ATPase stimulation ( V m (D)). Concentrations required for half-maximal ATPase stimulation ( K m (D)) correlated with ATP hydrolysis transition-state stabilization and ATP occlusion (EC 50 (D)) at a single site. Herein, we characterize several TMR analogues that elicit modest turnover ( k cat

Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Adenosine Triphosphate/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/chemistry , Enzyme Activation/drug effects , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Hydrolysis , Molecular Structure , Rhodamines , Verapamil/chemistry , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...