Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nanoscale Horiz ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018043

ABSTRACT

Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.

2.
Macromol Biosci ; : e2400073, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806184

ABSTRACT

The objective for this study is to advance the development of a specialized biomaterial that can effectively facilitate the regeneration of adipose tissue. In prior studies, the assessment of collagen (Col), elastin (Ela), and fibrin (Fib) unary scaffolds has been conducted. However, it is important to note that native adipose tissue is comprised of a diverse array of extracellular matrix (ECM) constituents. To mimic this behavior, binary compositions of collagen, elastin, and fibrin are fabricated in a 1:1 ratio, resulting in the formation of Col/Ela, Col/Fib, and Ela/Fib composites through a customized fabrication procedure. The physical properties of these scaffolds are comprehensively analyzed using a range of material characterization techniques. Additionally, the biological properties of the scaffolds are investigated by examining the survival, proliferation, and phenotype of adipose-derived stem cells. Subsequently, the aforementioned binary scaffolds are implanted into a rodent model for 28 days. the explants are analysed through X-ray microtomography, histology, and immunohistochemistry. The findings of the study demonstrate that the utilization of binary combinations of Col/Ela, Col/Fib, and Ela/Fib has a discernible impact on the physical and biological characteristics of the scaffolds. Nevertheless, Ela/Fib exhibits characteristics that make it a suitable candidate for adipogenesis due to its notable upregulation of caveolin-1 expression in both acellular and cellular cohorts. The combination of two natural polymers in this cell-material interaction has significantly enhanced the comprehension of adipogenesis.

3.
Sci Rep ; 12(1): 16977, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36216955

ABSTRACT

At a time of unpredictable challenges for health, one trend is certain: there is an exceedingly high demand for functional implants, particularly bone grafts. This has encouraged the emergence of bone tissue engineering substitutes as an alternative method to conventional bone grafts. However, the current approaches in the field face several limitations that have prevented the ultimate translation into clinical settings. As a result, many attempts have been made to fabricate synthetic bone implants that can offer suitable biological and mechanical properties.Light curable methacrylate-based polymers have ideal properties for bone repair. These materials are also suitable for 3D printing which can be applicable for restoration of both function and aesthetics. The main objective of this research was to investigate the role of calcium phosphate (CaP) incorporation in a mechanically stable, biologically functional and 3D printable polymer for the reconstruction of complex craniofacial defects. The experimental work initially involved the synthesis of (((((((((((3R,3aR,6S,6aR)- hexahydrofuro[3,2-b]furan-3,6-diyl)bis(oxy))bis(ethane-2,1- 48 diyl))bis(oxy))bis(carbonyl))bis(azanediyl))bis(3,3,5-trimethylcyclohexane-5,1- 49 diyl))bis(azanediyl))bis(carbonyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) referred to as CSMA and fabrication of composite discs via a Digital Light Printing (DLP) method. The flow behaviour of the polymer as a function of CaP addition, surface remineralisation potential, in vitro cell culture, using MC3T3 and Adipose-Derived Mesenchymal Stem Cells (ADSCs) and ex ovo angiogenic response was assessed. Finally, in vivo studies were carried out to investigate neo-bone formation at 4- and 8-weeks post-implantation. Quantitative micro-CT and histological evaluation did not show a higher rate of bone formation in CaP filled CSMA composites compared to CSMA itself. Therefore, such polymeric systems hold promising features by allowing more flexibility in designing a 3D printed scaffold targeted at the reconstruction of maxillofacial defects.


Subject(s)
Bone Substitutes , Osteogenesis , Biocompatible Materials/pharmacology , Bone Substitutes/pharmacology , Calcium Phosphates/pharmacology , Ethane , Furans , Methacrylates/pharmacology , Polymers , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
4.
J Vis Exp ; (178)2021 12 10.
Article in English | MEDLINE | ID: mdl-34958084

ABSTRACT

Surgical management of large tendon defects with tendon grafts is challenging, as there are a finite number of sites where donors can be readily identified and used. Currently, this gap is filled with tendon auto-, allo-, xeno-, or artificial grafts, but clinical methods to secure them are not necessarily translatable to animals because of the scale. In order to evaluate new biomaterials or study a tendon graft made up of collagen type 1, we have developed a modified suture technique to help maintain the engineered tendon in alignment with the tendon ends. Mechanical properties of these grafts are inferior to the native tendon. To incorporate engineered tendon into clinically relevant models of loaded repair, a strategy was adopted to offload the tissue engineered tendon graft and allow for the maturation and integration of the engineered tendon in vivo until a mechanically sound neo-tendon was formed. We describe this technique using incorporation of the collagen type 1 tissue engineered tendon construct.


Subject(s)
Tendons , Tissue Engineering , Animals , Biocompatible Materials , Biomechanical Phenomena , Collagen , Suture Techniques , Tendons/surgery , Tissue Engineering/methods
5.
Biomater Sci ; 9(23): 8032-8050, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34723312

ABSTRACT

Control of cell-surface interaction is necessary for biomaterial applications such as cell sheets, intelligent cell culture surfaces, or functional coatings. In this paper, we propose the emergent property of cell morphology as a design parameter in the bioengineering of cell-biomaterial surface interactions. Cell morphology measured through various parameters can indicate ideal candidates for these various applications thus reducing the time taken for the screening and development process. The hypothesis of this study is that there is an optimal cell morphology range for enhanced cell proliferation and migration on the surface of biomaterials. To test the hypothesis, primary porcine dermal fibroblasts (PDF, 3 biological replicates) were cultured on ten different surfaces comprising components of the natural extracellular matrix of tissues. Results suggested an optimal morphology with a cell aspect ratio (CAR) between 0.2 and 0.4 for both increased cell proliferation and migration. If the CAR was below 0.2 (very elongated cell), cell proliferation was increased whilst migration was reduced. A CAR of 0.4+ (rounded cell) favoured cell migration over proliferation. The screening process, when it comes to biomaterials is a long, repetitive, arduous but necessary event. This study highlights the beneficial use of testing the cell morphology on prospective prototypes, eliminating those that do not support an optimal cell shape. We believe that the research presented in this paper is important as we can help address this screening inefficiency through the use of the emergent property of cell morphology. Future work involves automating CAR quantification for high throughput screening of prototypes.


Subject(s)
Biocompatible Materials , Bioengineering , Animals , Cell Movement , Cell Shape , Prospective Studies , Swine
6.
J Tissue Eng ; 12: 20417314211019238, 2021.
Article in English | MEDLINE | ID: mdl-34104389

ABSTRACT

Current gold standard to treat soft tissue injuries caused by trauma and pathological condition are autografts and off the shelf fillers, but they have inherent weaknesses like donor site morbidity, immuno-compatibility and graft failure. To overcome these limitations, tissue-engineered polymers are seeded with stem cells to improve the potential to restore tissue function. However, their interaction with native tissue is poorly understood so far. To study these interactions and improve outcomes, we have fabricated scaffolds from natural polymers (collagen, fibrin and elastin) by custom-designed processes and their material properties such as surface morphology, swelling, wettability and chemical cross-linking ability were characterised. By using 3D scaffolds, we comprehensive assessed survival, proliferation and phenotype of adipose-derived stem cells in vitro. In vivo, scaffolds were seeded with adipose-derived stem cells and implanted in a rodent model, with X-ray microtomography, histology and immunohistochemistry as read-outs. Collagen-based materials showed higher cell adhesion and proliferation in vitro as well as higher adipogenic properties in vivo. In contrast, fibrin demonstrated poor cellular and adipogenesis properties but higher angiogenesis. Elastin formed the most porous scaffold, with cells displaying a non-aggregated morphology in vitro while in vivo elastin was the most degraded scaffold. These findings of how polymers present in the natural polymers mimicking ECM and seeded with stem cells affect adipogenesis in vitro and in vivo can open avenues to design 3D grafts for soft tissue repair.

7.
J Tissue Eng ; 12: 20417314211005610, 2021.
Article in English | MEDLINE | ID: mdl-33889382

ABSTRACT

Due to the limitations of bone autografts, we aimed to develop new composite biomaterials with pro-angiogenic and osteogenic properties to be used as scaffolds in bone tissue engineering applications. We used a porous, cross-linked and slowly biodegradable fibrin/alginate scaffold originally developed in our laboratory for wound healing, throughout which deposits of calcium phosphate (CaP) were evenly incorporated using an established biomimetic method. Material characterisation revealed the porous nature and confirmed the deposition of CaP precursor phases throughout the scaffolds. MC3T3-E1 cells adhered to the scaffolds, proliferated, migrated and differentiated down the osteogenic pathway during the culture period. Chick chorioallantoic membrane (CAM) assay results showed that the scaffolds were pro-angiogenic and biocompatible. The work presented here gave useful insights into the potential of these pro-angiogenic and osteogenic scaffolds for bone tissue engineering and merits further research in a pre-clinical model prior to its clinical translation.

8.
J Tissue Eng ; 11: 2041731420942903, 2020.
Article in English | MEDLINE | ID: mdl-32742632

ABSTRACT

The use of decellularised matrices as scaffolds offers the advantage of great similarity with the tissue to be replaced. Moreover, decellularised tissues and organs can be repopulated with the patient's own cells to produce bespoke therapies. Great progress has been made in research and development of decellularised scaffolds, and more recently, these materials are being used in exciting new areas like hydrogels and bioinks. However, much effort is still needed towards preserving the original extracellular matrix composition, especially its minor components, assessing its functionality and scaling up for large tissues and organs. Emphasis should also be placed on developing new decellularisation methods and establishing minimal criteria for assessing the success of the decellularisation process. The aim of this review is to critically review the existing literature on decellularised scaffolds, especially on the preparation of these matrices, and point out areas for improvement, finishing with alternative uses of decellularised scaffolds other than tissue and organ reconstruction. Such uses include three-dimensional ex vivo platforms for idiopathic diseases and cancer modelling.

9.
J Tissue Eng ; 11: 2041731420901621, 2020.
Article in English | MEDLINE | ID: mdl-32110373

ABSTRACT

Biomaterial development for clinical applications is currently on the rise. This necessitates adequate in vitro testing, where the structure and composition of biomaterials must be specifically tailored to withstand in situ repair and regeneration responses for a successful clinical outcome. The chorioallantoic membrane of chicken embryos has been previously used to study angiogenesis, a prerequisite for most tissue repair and regeneration. In this study, we report an optimised ex ovo method using a glass-cling film set-up that yields increased embryo survival rates and has an improved protocol for harvesting biomaterials. Furthermore, we used this method to examine the intrinsic angiogenic capacity of a variety of biomaterials categorised as natural, synthetic, natural/synthetic and natural/natural composites with varying porosities. We detected significant differences in biomaterials' angiogenesis with natural polymers and polymers with a high overall porosity showing a greater vascularisation compared to synthetic polymers. Therefore, our proposed ex ovo chorioallantoic membrane method can be effectively used to pre-screen biomaterials intended for clinical application.

10.
ACS Appl Mater Interfaces ; 12(12): 13587-13597, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32107914

ABSTRACT

Biomaterials for tissue engineering include natural and synthetic polymers, but their clinical application is still limited due to various disadvantages associated with the use of these polymers. This uncertainty of the polymeric approach in tissue engineering launches an opportunity to address a key question: can we eliminate the disadvantages of both natural and synthetic polymers by combining them to form a synergistic relationship? To answer this question, we fabricated scaffolds from elastin, collagen, fibrin, and electrospun polycaprolactone (PCL) with different ratios. The material characterization of these scaffolds investigated degradation, water contact angle, angiogenesis by an ex ovo chorion allantoic membrane (CAM) assay, and mechanical and structural properties. Biological activity and specific differentiation pathways (MSC, adipogenic, osteogenic, myogenic, and chondrogenic) were studied by using human adipose-derived stem cells. Results indicated that all composite polymers degraded at a different rate, thus affecting their mechanical integrity. Cell-based assays demonstrated continual proliferative and viable properties of the cells on all seeded scaffolds with the particular initiation of a differentiation pathway among which the PCL/collagen/fibrin composite was the most angiogenic material with maximum vasculature. We were able to tailor the physical and biological properties of PCL-based composites to form a synergistic relationship for various tissue regeneration applications.


Subject(s)
Cell Differentiation/drug effects , Mesenchymal Stem Cells/drug effects , Neovascularization, Physiologic/drug effects , Polymers/pharmacology , Tissue Scaffolds/chemistry , Allantois/drug effects , Allantois/growth & development , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Chick Embryo , Chorion/drug effects , Chorion/growth & development , Collagen/chemistry , Elastin/chemistry , Fibrin/chemistry , Humans , Mesenchymal Stem Cells/cytology , Polyesters/chemistry , Polyesters/pharmacology , Polymers/chemical synthesis , Polymers/chemistry , Tissue Engineering/methods
11.
J Tissue Eng Regen Med ; 14(1): 135-146, 2020 01.
Article in English | MEDLINE | ID: mdl-31622052

ABSTRACT

Tendon mechanobiology plays a vital role in tendon repair and regeneration; however, this mechanism is currently poorly understood. We tested the role of different mechanical loads on extracellular matrix (ECM) remodelling gene expression and the morphology of tendon fibroblasts in collagen hydrogels, designed to mimic native tissue. Hydrogels were subjected to precise static or uniaxial loading patterns of known magnitudes and sampled to analyse gene expression of known mechano-responsive ECM-associated genes (Collagen I, Collagen III, Tenomodulin, and TGF-ß). Tendon fibroblast cytomechanics was studied under load by using a tension culture force monitor, with immunofluorescence and immunohistological staining used to examine cell morphology. Tendon fibroblasts subjected to cyclic load showed that endogenous matrix tension was maintained, with significant concomitant upregulation of ECM remodelling genes, Collagen I, Collagen III, Tenomodulin, and TGF-ß when compared with static load and control samples. These data indicate that tendon fibroblasts acutely adapt to the mechanical forces placed upon them, transmitting forces across the ECM without losing mechanical dynamism. This model demonstrates cell-material (ECM) interaction and remodelling in preclinical a platform, which can be used as a screening tool to understand tendon regeneration.


Subject(s)
Extracellular Matrix/metabolism , Fibroblasts/cytology , Printing, Three-Dimensional , Tendons/pathology , Tissue Engineering/methods , Animals , Biomimetics , Biophysics , Cells, Cultured , Collagen/chemistry , Collagen/metabolism , Collagen Type I/metabolism , Fibroblasts/metabolism , Rabbits , Regeneration , Stress, Mechanical , Transforming Growth Factor beta/metabolism , Up-Regulation
12.
ACS Biomater Sci Eng ; 5(10): 5218-5228, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-33455227

ABSTRACT

Reconstruction of a tendon rupture is surgically challenging as each end of the tendon retracts, leaving a substantial gap and direct repair is often not feasible. A tendon graft is required to bridge this defect and restore function. Presently, these gaps are filled with auto-, allo-, or synthetic grafts, but they all have clinical limitations. To address this issue, we developed tissue-engineered grafts by a rapid process using compressed type I collagen, which is the most dominant protein in the tendon. However, biomechanical properties were found to be unsuitable to withstand complete load-bearing in vivo. Hence, a modified suture technique was previously developed to reduce the load on the engineered collagen graft to aid integration in vivo. Using this technique, we tested engineered collagen grafts in vivo on a lapine model in three groups up to 12 weeks without immobilization. Gross observation at 3 and 12 weeks showed the bridge integrated without adhesions with a significant increase in the mechanical, structural and histological properties as compared to 1 week. Insertion of a tissue-engineered collagen graft using a novel load-bearing suture technique which partially loads in vivo showed integration, greater mechanical strength and no adhesion formation in the time period tested. This collagen graft has inherent advantages as compared to the present-day tendon grafts.

13.
Bone ; 110: 38-46, 2018 05.
Article in English | MEDLINE | ID: mdl-29355746

ABSTRACT

Bone remodelling is a dynamic process required for the maintenance of bone architecture in response to the changing mechanical needs. It is also a vital process during the repair of bone tissue following injury. Clinical intervention in terms of autografting or allografting is often required to heal bone injuries where physiological healing fails. The use of biomaterials as alternatives to autografts and allografts has spurred a significant research interest into further development of biomaterials for better clinical outcomes. Unfortunately, many biomaterials fail to make it to the clinic or fail after implantation due to the inconsistencies observed between in vitro and in vivo studies. It is therefore important to mimic the in vivo situation as closely as possible in an in vitro setting for testing biomaterials. The current in vitro models focus mostly on investigating the behaviour of osteoblast progenitors with the biomaterial under development as well as assessing the behaviour of osteoclasts, endothelial cells etc. However, the sequence of events that take place during bone healing or remodelling are not incorporated into the current in vitro models. This review highlights our current understanding of the physiological bone remodelling and the bone healing process followed by strategies to incorporate both the physiological and pathophysiological events into an in vitro environment. Here, we propose three strategies for the assessment of biomaterials for bone, which includes; (1) testing biomaterials in the presence of immune cells, (2) testing biomaterials for osteogenesis, and (3) testing biomaterials in the presence of osteoclasts followed by osteoblasts to recapitulate the physiological events of bone resorption prior to bone formation. The focus of this review is to discuss the third strategy in details as the first two strategies are currently incorporated into a majority of in vitro experiments.


Subject(s)
Biocompatible Materials/metabolism , Bone Remodeling , Inflammation , Osteoblasts/metabolism , Osteoclasts/metabolism , Animals , Bone Resorption , Bone and Bones/metabolism , Fracture Healing , Humans , In Vitro Techniques , Macrophages/metabolism , Osteogenesis
14.
J Tissue Eng ; 5: 2041731414549678, 2014.
Article in English | MEDLINE | ID: mdl-25383170

ABSTRACT

Tendon disease and injuries carry significant morbidity worldwide in both athletic and non-athletic populations. It is estimated that tendon injuries account for 30%-50% of all musculoskeletal injuries globally. Current treatments have been inadequate in providing an accelerated process of repair resulting in high relapse rates. Modern concepts in tissue engineering and regenerative medicine have led to increasing interest in the application of cell therapy for the treatment of tendon disease. This review will explore the use of cell therapy, by bringing together up-to-date evidence from in vivo human and animal studies, and discuss the issues surrounding the safety and efficacy of its use in the treatment of tendon disease.

16.
Biores Open Access ; 2(5): 327-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24083088

ABSTRACT

The traumatic rupture of tendons is a common clinical problem. Tendon repair is surgically challenging because the tendon often retracts, resulting in a gap between the torn end and its bony insertion. Tendon grafts are currently used to fill this deficit but are associated with potential complications relating to donor site morbidity and graft necrosis. We have developed a highly reproducible, rapid process technique to manufacture compressed cell-seeded type I collagen constructs to replace tendon grafts. However, the material properties of the engineered constructs are currently unsuitable to withstand complete load bearing in vivo. A modified suture technique has been developed to withstand physiological loading and off load the artificial construct while integration occurs. Lapine tendons were used ex vivo to test the strength of different suture techniques with different sizes of Prolene sutures and tissue-engineered collagen constructs in situ. The data were compared to standard modified Kessler suture using a standard tendon graft. Mechanical testing was carried out and a finite element analysis stress distribution model constructed using COMSOL 3.5 software. The break point for modified suture technique with a tissue-engineered scaffold was significantly higher (50.62 N) compared to a standard modified Kessler suture (12.49 N, p<0.05). Distributing suture tension further proximally and distally from the tendon ends increased the mechanical strength of the repairs. We now have ex vivo proof of concept that this suture technique is suitable for testing in vivo, and this will be the next stage of our research.

SELECTION OF CITATIONS
SEARCH DETAIL
...