Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 163(3): 607-19, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26456113

ABSTRACT

Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD(+) and NADP(+). Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.


Subject(s)
Bacterial Toxins/metabolism , NAD+ Nucleosidase/metabolism , Peptide Elongation Factor Tu/metabolism , Pseudomonas aeruginosa/metabolism , Type VI Secretion Systems/chemistry , ADP Ribose Transferases/metabolism , Bacterial Toxins/chemistry , Models, Molecular , NAD/metabolism , NAD+ Nucleosidase/chemistry , NADP/metabolism , Peptide Elongation Factor Tu/chemistry , Protein Structure, Tertiary , Pseudomonas aeruginosa/enzymology , Type VI Secretion Systems/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...