Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lang Speech ; : 238309231224790, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38680040

ABSTRACT

The goal of this article is to illustrate the use of MRI for exploring bi- and multi-lingual articulatory strategies. One male and one female speaker recorded sets of static midsagittal MRIs of the whole vocal tract, producing vowels as well as consonants in various vowel contexts in either the male's two or the female's three languages. Both speakers were native speakers of English (American and Australian English, respectively), and both were fluent L2 speakers of French. In addition, the female speaker was a heritage speaker of Croatian. Articulatory contours extracted from the MRIs were subsequently used at three progressively more compact and abstract levels of analysis. (1) Direct comparison of overlaid contours was used to assess whether phones analogous across L1 and L2 are similar or dissimilar, both overall and in specific vocal tract regions. (2) Consonant contour variability along the vocal tract due to vowel context was determined using dispersion ellipses and used to explore the variable resistance to coarticulation for non-analogous rhotics and analogous laterals in Australian, French, and Croatian. (3) Articulatory modeling was used to focus on specific articulatory gestures (tongue position and shape, lip protrusion, laryngeal height, etc.) and then to explore the articulatory strategies in the speakers' interlanguages for production of the French front rounded vowel series. This revealed that the Australian and American speakers used different strategies to produce the non-analogous French vowel series. We conclude that MRI-based articulatory data constitute a very rich and underused source of information that amply deserves applications to the study of L2 articulation and bilingual and multi-lingual speech.

2.
Hum Mov Sci ; 652019 Jun.
Article in English | MEDLINE | ID: mdl-29731149

ABSTRACT

How do children learn to write letters? During writing acquisition, some letters may be more difficult to produce than others because certain movement sequences require more precise motor control (e.g., the rotation that produces curved lines like in letter O or the pointing movement to trace the horizontal bar of a T). Children of ages 6-10 (N = 108) wrote sequences of upper-case letters on a digitizer. They varied in the number of pointing and rotation movements. The data revealed that these movements required compensatory strategies in specific kinematic variables. For pointing movements there was a duration decrease that was compensated by an increase in in-air movement time. Rotation movements were produced with low maximal velocity but high minimal velocity. At all ages there was a global tendency to keep stability in the tempo of writing: pointing movements exhibited a duration trade-off whereas rotation movements required a trade-off on maximal and minimal velocity. The acquisition of letter writing took place between ages 6 and 7. At age 8 the children shifted focus to improving movement control. Writing automation was achieved around age 10 when the children controlled movement duration and fluency. This led to a significant increase in writing speed.


Subject(s)
Child Development/physiology , Handwriting , Learning/physiology , Motor Skills/physiology , Aging/physiology , Aging/psychology , Biomechanical Phenomena/physiology , Child , Female , Humans , Male , Movement/physiology , Psychomotor Performance/physiology , Rotation
3.
Sci Adv ; 5(12): eaaw3916, 2019 12.
Article in English | MEDLINE | ID: mdl-32076631

ABSTRACT

Recent articles on primate articulatory abilities are revolutionary regarding speech emergence, a crucial aspect of language evolution, by revealing a human-like system of proto-vowels in nonhuman primates and implicitly throughout our hominid ancestry. This article presents both a schematic history and the state of the art in primate vocalization research and its importance for speech emergence. Recent speech research advances allow more incisive comparison of phylogeny and ontogeny and also an illuminating reinterpretation of vintage primate vocalization data. This review produces three major findings. First, even among primates, laryngeal descent is not uniquely human. Second, laryngeal descent is not required to produce contrasting formant patterns in vocalizations. Third, living nonhuman primates produce vocalizations with contrasting formant patterns. Thus, evidence now overwhelmingly refutes the long-standing laryngeal descent theory, which pushes back "the dawn of speech" beyond ~200 ka ago to over ~20 Ma ago, a difference of two orders of magnitude.


Subject(s)
Biological Evolution , Models, Theoretical , Speech , Animals , Communication , Humans , Research , Vocalization, Animal
4.
PLoS One ; 12(1): e0169321, 2017.
Article in English | MEDLINE | ID: mdl-28076426

ABSTRACT

Language is a distinguishing characteristic of our species, and the course of its evolution is one of the hardest problems in science. It has long been generally considered that human speech requires a low larynx, and that the high larynx of nonhuman primates should preclude their producing the vowel systems universally found in human language. Examining the vocalizations through acoustic analyses, tongue anatomy, and modeling of acoustic potential, we found that baboons (Papio papio) produce sounds sharing the F1/F2 formant structure of the human [ɨ æ ɑ ɔ u] vowels, and that similarly with humans those vocalic qualities are organized as a system on two acoustic-anatomic axes. This confirms that hominoids can produce contrasting vowel qualities despite a high larynx. It suggests that spoken languages evolved from ancient articulatory skills already present in our last common ancestor with Cercopithecoidea, about 25 MYA.


Subject(s)
Biological Evolution , Papio/physiology , Speech Acoustics , Speech/physiology , Vocalization, Animal/physiology , Animals , Female , Humans , Larynx/anatomy & histology , Larynx/physiology , Male , Muscles/physiology , Papio/anatomy & histology , Phonetics , Tongue/anatomy & histology , Tongue/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...