Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(3): e0271223, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38240572

ABSTRACT

Management of urinary tract infection (UTI) in postmenopausal women can be challenging. The recent rise in resistance to most of the available oral antibiotic options together with high recurrence rate in postmenopausal women has further complicated treatment of UTI. As such, intravesical instillations of antibiotics like gentamicin are being investigated as an alternative to oral antibiotic therapies. This study evaluates the efficacy of the candidate intravesical therapeutic VesiX, a solution containing the cationic detergent Cetylpyridinium chloride, against a broad range of uropathogenic bacterial species clinically isolated from postmenopausal women with recurrent UTI (rUTI). We also evaluate the cytotoxicity of VesiX against cultured bladder epithelial cells and find that low concentrations of 0.0063% and 0.0125% provide significant bactericidal effect toward diverse bacterial species including uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae, Enterococcus faecalis, Pseudomonas aeruginosa, and Proteus mirabilis while minimizing cytotoxic effects against cultured 5637 bladder epithelial cells. Lastly, to begin to evaluate the potential utility of using VesiX in combination therapy with existing intravesical therapies for rUTI, we investigate the combined effects of VesiX and the intravesical antibiotic gentamicin. We find that VesiX and gentamicin are not antagonistic and are able to reduce levels of intracellular UPEC in cultured bladder epithelial cells. IMPORTANCE: When urinary tract infections (UTIs), which affect over 50% of women, become resistant to available antibiotic therapies dangerous complications like kidney infection and lethal sepsis can occur. New therapeutic paradigms are needed to expand our arsenal against these difficult to manage infections. Our study investigates VesiX, a Cetylpyridinium chloride (CPC)-based therapeutic, as a candidate broad-spectrum antimicrobial agent for use in bladder instillation therapy for antibiotic-resistant UTI. CPC is a cationic surfactant that is FDA-approved for use in mouthwashes and is used as a food additive but has not been extensively evaluated as a UTI therapeutic. Our study is the first to investigate its rapid bactericidal kinetics against diverse uropathogenic bacterial species isolated from postmenopausal women with recurrent UTI and host cytotoxicity. We also report that together with the FDA-approved bladder-instillation agent gentamicin, VesiX was able to significantly reduce intracellular populations of uropathogenic bacteria in cultured bladder epithelial cells.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Female , Urinary Bladder/microbiology , Cetylpyridinium/pharmacology , Cetylpyridinium/therapeutic use , Anti-Bacterial Agents/therapeutic use , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Gentamicins/pharmacology , Gentamicins/therapeutic use , Epithelial Cells , Escherichia coli Infections/microbiology
2.
mBio ; 14(3): e0005223, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37102874

ABSTRACT

Prior research has focused on host factors as mediators of exaggerated sepsis-associated morbidity and mortality in older adults. This focus on the host, however, has failed to identify therapies that improve sepsis outcomes in the elderly. We hypothesized that the increased susceptibility of the aging population to sepsis is not only a function of the host but also reflects longevity-associated changes in the virulence of gut pathobionts. We utilized two complementary models of gut microbiota-induced experimental sepsis to establish the aged gut microbiome as a key pathophysiologic driver of heightened disease severity. Further murine and human investigations into these polymicrobial bacterial communities demonstrated that age was associated with only subtle shifts in ecological composition but also an overabundance of genomic virulence factors that have functional consequence on host immune evasion. IMPORTANCE Older adults suffer more frequent and worse outcomes from sepsis, a critical illness secondary to infection. The reasons underlying this unique susceptibility are incompletely understood. Prior work in this area has focused on how the immune response changes with age. The current study, however, focuses instead on alterations in the community of bacteria that humans live with within their gut (i.e., the gut microbiome). The central concept of this paper is that the bacteria in our gut evolve along with the host and "age," making them more efficient at causing sepsis.


Subject(s)
Gastrointestinal Microbiome , Sepsis , Humans , Animals , Mice , Aged , Gastrointestinal Microbiome/physiology , Virulence , Bacteria/genetics , Aging , Sepsis/microbiology
3.
bioRxiv ; 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36711447

ABSTRACT

Prior research has focused on host factors as mediators of exaggerated sepsis-associated morbidity and mortality in older adults. This focus on the host, however, has failed to identify therapies that improve sepsis outcomes in the elderly. We hypothesized that the increased susceptibility of the aging population to sepsis is not only a function of the host, but also reflects longevity-associated changes in the virulence of gut pathobionts. We utilized two complementary models of gut microbiota-induced experimental sepsis to establish the aged gut microbiome as a key pathophysiologic driver of heightened disease severity. Further murine and human investigations into these polymicrobial bacterial communities demonstrated that age was associated with only subtle shifts in ecological composition, but an overabundance of genomic virulence factors that have functional consequence on host immune evasion. One Sentence Summary: The severity of sepsis in the aged host is in part mediated by longevity-associated increases in gut microbial virulence.

5.
Open Forum Infect Dis ; 9(2): ofab615, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35097152

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis (Mtb) strains resistant to isoniazid and rifampin (multidrug-resistant tuberculosis [MDR-TB]) are increasingly reported worldwide, requiring renewed focus on the nuances of drug resistance. Patients with low-level moxifloxacin resistance may benefit from higher doses, but limited clinical data on this strategy are available. METHODS: We conducted a 5-year observational cohort study of MDR-TB patients at a tertiary care center in India. Participants with Mtb isolates resistant to isoniazid, rifampin, and moxifloxacin (at the 0.5 µg/mL threshold) were analyzed according to receipt of high-dose moxifloxacin (600 mg daily) as part of a susceptibility-guided treatment regimen. Univariable and multivariable Cox proportional hazard models assessed the relationship between high-dose moxifloxacin and unfavorable treatment outcomes. RESULTS: Of 354 participants with MDR-TB resistant to moxifloxacin, 291 (82.2%) received high-dose moxifloxacin. The majority experienced good treatment outcomes (200 [56.5%]), which was similar between groups (56.7% vs 54.0%, P = .74). Unfavorable outcomes were associated with greater extent of radiographic disease, lower initial body mass index, and concurrent treatment with fewer drugs with confirmed phenotypic susceptibility. Treatment with high-dose moxifloxacin was not associated with improved outcomes in either unadjusted (hazard ratio [HR], 1.2 [95% confidence interval {CI}, .6-2.4]) or adjusted (HR, 0.8 [95% CI, .5-1.4]) models but was associated with joint pain (HR, 3.2 [95% CI, 1.2-8.8]). CONCLUSIONS: In a large observational cohort, adding high-dose (600 mg) moxifloxacin to a drug susceptibility test-based treatment regimen for MDR-TB was associated with increased treatment-associated side effects without improving overall outcomes and should be avoided for empiric treatment of moxifloxacin-resistant MDR-TB.

SELECTION OF CITATIONS
SEARCH DETAIL
...