Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 144(45): 20590-20600, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36321637

ABSTRACT

Spinel oxides are an ideal setting to explore the interplay between configurational entropy, site selectivity, and magnetism in high-entropy oxides (HEOs). In this work, we characterize the magnetic properties of the spinel (Cr, Mn, Fe, Co, Ni)3O4 and study the evolution of its magnetism as a function of nonmagnetic gallium substitution. Across the range of compositions studied here, from 0 to 40% Ga, magnetic susceptibility and powder neutron diffraction measurements show that ferrimagnetic order is robust in the spinel HEO. However, we also find that the ferrimagnetic order is highly tunable, with the ordering temperature, saturated and sublattice moments, and magnetic hardness all varying significantly as a function of Ga concentration. Through X-ray absorption and magnetic circular dichroism, we are able to correlate this magnetic tunability with strong site selectivity between the various cations and the tetrahedral and octahedral sites in the spinel structure. In particular, we find that while Ni and Cr are largely unaffected by the substitution with Ga, the occupancies of Mn, Co, and Fe are each significantly redistributed. Ga substitution also requires an overall reduction in the transition metal valence, and this is entirely accommodated by Mn. Finally, we show that while site selectivity has an overall suppressing effect on the configurational entropy, over a certain range of compositions, Ga substitution yields a striking increase in the configurational entropy and may confer additional stabilization. Spinel oxides can be tuned seamlessly from the low-entropy to the high-entropy regime, making this an ideal platform for entropy engineering.

2.
Nat Commun ; 12(1): 4573, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34321473

ABSTRACT

The mechanism of the enhanced superconductivity in monolayer FeSe/SrTiO3 has been enthusiastically studied and debated over the past decade. One specific observation has been taken to be of central importance: the replica bands in the photoemission spectrum. Although suggestive of electron-phonon interaction in the material, the essence of these spectroscopic features remains highly controversial. In this work, we conduct angle-resolved photoemission spectroscopy measurements on monolayer FeSe/SrTiO3 using linearly polarized photons. This configuration enables unambiguous characterization of the valence electronic structure with a suppression of the spectral background. We consistently observe high-order replica bands derived from various Fe 3d bands, similar to those observed on bare SrTiO3. The intensity of the replica bands is unexpectedly high and different between dxy and dyz bands. Our results provide new insights on the electronic structure of this high-temperature superconductor and the physical origin of the photoemission replica bands.

3.
Sci Adv ; 7(2)2021 Jan.
Article in English | MEDLINE | ID: mdl-33523988

ABSTRACT

Titanium monoxide (TiO), an important member of the rock salt 3d transition-metal monoxides, has not been studied in the stoichiometric single-crystal form. It has been challenging to prepare stoichiometric TiO due to the highly reactive Ti2+ We adapt a closely lattice-matched MgO(001) substrate and report the successful growth of single-crystalline TiO(001) film using molecular beam epitaxy. This enables a first-time study of stoichiometric TiO thin films, showing that TiO is metal but in proximity to Mott insulating state. We observe a transition to the superconducting phase below 0.5 K close to that of Ti metal. Density functional theory (DFT) and a DFT-based tight-binding model demonstrate the extreme importance of direct Ti-Ti bonding in TiO, suggesting that similar superconductivity exists in TiO and Ti metal. Our work introduces the new concept that TiO behaves more similar to its metal counterpart, distinguishing it from other 3d transition-metal monoxides.

4.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33397720

ABSTRACT

The recent observation of superconductivity in [Formula: see text] has raised fundamental questions about the hierarchy of the underlying electronic structure. Calculations suggest that this system falls in the Mott-Hubbard regime, rather than the charge-transfer configuration of other nickel oxides and the superconducting cuprates. Here, we use state-of-the-art, locally resolved electron energy-loss spectroscopy to directly probe the Mott-Hubbard character of [Formula: see text] Upon doping, we observe emergent hybridization reminiscent of the Zhang-Rice singlet via the oxygen-projected states, modification of the Nd 5d states, and the systematic evolution of Ni 3d hybridization and filling. These experimental data provide direct evidence for the multiband electronic structure of the superconducting infinite-layer nickelates, particularly via the effects of hole doping on not only the oxygen but also nickel and rare-earth bands.

5.
Phys Rev Lett ; 124(20): 207004, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32501091

ABSTRACT

Superconductivity with T_{c}≈15 K was recently found in doped NdNiO_{2}. The Ni^{1+}O_{2} layers are expected to be Mott insulators, so hole doping should produce Ni^{2+} with S=1, incompatible with robust superconductivity. We show that the NiO_{2} layers fall inside a critical region where the large pd hybridization favors a singlet ^{1}A_{1} hole-doped state like in CuO_{2}. However, we find that the superexchange is about one order smaller than in cuprates, thus a magnon "glue" is very unlikely and another mechanism needs to be found.

6.
Nature ; 572(7771): 592-593, 2019 08.
Article in English | MEDLINE | ID: mdl-31462794
7.
Appl Opt ; 58(8): 2028-2032, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30874070

ABSTRACT

We present a method for substantially enhancing the rate of heat transfer into and out of the working fluid of a heat engine, using bidirectional thermal radiation exchange between the external environment and many individual graphene layers that are dispersed and suspended within an inert gas. This hybrid working fluid has the unique composite property of high optical absorption/emission yet low specific heat. Consequently, it can heat and cool rapidly, enabling a much greater cycle frequency and a commensurate increase in specific power, in comparison to conventional closed-cycle heat engines for which the cycle frequency is limited by the use of slower, non-radiative, thermal transfer.

8.
Proc Natl Acad Sci U S A ; 115(38): 9515-9520, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30185557

ABSTRACT

In transition metal perovskites ABO3, the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths, and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as an approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes-that is, directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials' properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants, and oxygen rotation angles), and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.

9.
Phys Rev Lett ; 120(23): 237001, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29932689

ABSTRACT

The recent observation of replica bands in single-layer FeSe/SrTiO_{3} by angle-resolved photoemission spectroscopy (ARPES) has triggered intense discussions concerning the potential influence of the FeSe electrons coupling with substrate phonons on the superconducting transition temperature. Here we provide strong evidence that the replica bands observed in the single-layer FeSe/SrTiO_{3} system and several other cases are largely due to the energy loss processes of the escaping photoelectron, resulted from the well-known strong coupling of external propagating electrons to Fuchs-Kliewer surface phonons in ionic materials in general. The photoelectron energy loss in ARPES on single-layer FeSe/SrTiO_{3} is calculated using the demonstrated successful semiclassical dielectric theory in describing low energy electron energy loss spectroscopy of ionic insulators. Our result shows that the observed replica bands are mostly a result of extrinsic photoelectron energy loss and not a result of the electron phonon interaction of the Fe d electrons with the substrate phonons. The strong enhancement of the superconducting transition temperature in these monolayers remains an open question.

10.
Nat Commun ; 8(1): 2267, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273715

ABSTRACT

There is major interest, in condensed matter physics, in understanding the role of topology: remarkable progress has been made in classifying topological properties of non-interacting electrons, and on understanding the interplay between topology and electron-electron interactions. We extend such studies to interactions with the lattice, and predict non-trivial topological effects in infinitely long-lived polaron bands. Specifically, for a two-dimensional many-band model with realistic electron-phonon coupling, we verify that sharp level crossings are possible for polaron eigenstates, and prove that they are responsible for a novel type of sharp transition in the ground state of the polaron that can occur at a fixed momentum. Furthermore, they result in the appearance of Dirac cones stabilized by electron-phonon coupling. Thus, electron-phonon coupling opens an avenue to create and control Dirac and Weyl semimetals.

11.
Nano Lett ; 17(11): 7062-7066, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29053919

ABSTRACT

Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO3 (STO) achieved using polar La7/8Sr1/8MnO3 (LSMO) buffer layers to manipulate both polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant X-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer layers provides a new approach for the design of functional oxide interfaces.

12.
Nat Commun ; 7: 13017, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27725665

ABSTRACT

The metal-insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal-insulator transition in terms of bond disproportionation.

13.
Sci Adv ; 2(8): e1600782, 2016 08.
Article in English | MEDLINE | ID: mdl-27536726

ABSTRACT

Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.


Subject(s)
Electric Conductivity , Electrons , Models, Theoretical , Temperature
14.
Sci Adv ; 2(3): e1501652, 2016 03.
Article in English | MEDLINE | ID: mdl-27051872

ABSTRACT

Understanding the physical properties of the chain-ladder Sr3Ca11Cu24O41 hole-doped superconductor has been precluded by the unknown hole distribution among chains and ladders. We use electron energy-loss spectrometry (EELS) in a scanning transmission electron microscope (STEM) at atomic resolution to directly separate the contributions of chains and ladders and to unravel the hole distribution from the atomic scale variations of the O-K near-edge structures. The experimental data unambiguously demonstrate that most of the holes lie within the chain layers. A quantitative interpretation supported by inelastic scattering calculations shows that about two holes are located in the ladders, and about four holes in the chains, shedding light on the electronic structure of Sr3Ca11Cu24O41. Combined atomic resolution STEM-EELS and inelastic scattering calculations is demonstrated as a powerful approach toward a quantitative understanding of the electronic structure of cuprate superconductors, offering new possibilities for elucidating their physical properties.


Subject(s)
Metals/chemistry , Nanostructures/chemistry , Superconductivity , Crystallography, X-Ray , Models, Molecular
15.
Phys Rev Lett ; 116(8): 087002, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26967437

ABSTRACT

We argue that tetragonal CuO (T-CuO) has the potential to finally settle long-standing modeling issues for cuprate physics. We compare the one-hole quasiparticle (qp) dispersion of T-CuO to that of cuprates, in the framework of the strongly correlated (U_{dd}→∞) limit of the three-band Emery model. Unlike in CuO_{2}, magnetic frustration in T-CuO breaks the C_{4} rotational symmetry and leads to strong deviations from the Zhang-Rice singlet picture in parts of the reciprocal space. Our results are consistent with angle-resolved photoemission spectroscopy data but in sharp contradiction to those of a one-band model previously suggested for them. These differences identify T-CuO as an ideal material to test a variety of scenarios proposed for explaining cuprate phenomenology.

16.
ACS Nano ; 9(4): 4064-9, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25769341

ABSTRACT

Combining the photoelectric and thermionic mechanisms to generate free electrons has been of great interest since the early days of quantum physics as exemplified by the Fowler-DuBridge theory, and recently proposed for highly efficient solar conversion. We present experimental evidence of this combined effect over the entire range spanning room-temperature photoemission to thermionic emission. Remarkably, the optical stimulus alone is responsible for both heating and photoemission at the same time. Moreover, the current depends on optical intensity quadratically, indicating two-photon photoemission, for intensities of ca. 1-50 W/cm(2), which are orders of magnitude below the intensities required for two-photon photoemission from bulk metals. This surprising behavior appears to be enabled by the internal nanostructure of the carbon nanotube forest, which captures photons effectively, yet allows electrons to escape easily.

17.
Science ; 347(6219): 282-5, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25593186

ABSTRACT

In cuprate high-temperature superconductors, an antiferromagnetic Mott insulating state can be destabilized toward unconventional superconductivity by either hole or electron doping. In hole-doped (p-type) cuprates, a charge ordering (CO) instability competes with superconductivity inside the pseudogap state. We report resonant x-ray scattering measurements that demonstrate the presence of charge ordering in the n-type cuprate Nd(2-x)Ce(x)CuO4 near optimal doping. We find that the CO in Nd(2-x)Ce(x)CuO4 occurs with similar periodicity, and along the same direction, as in p-type cuprates. However, in contrast to the latter, the CO onset in Nd(2-x)Ce(x)CuO4 is higher than the pseudogap temperature, and is in the temperature range where antiferromagnetic fluctuations are first detected. Our discovery opens a parallel path to the study of CO and its relationship to antiferromagnetism and superconductivity.

18.
J Phys Chem Lett ; 6(19): 3982-7, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26722903

ABSTRACT

A new type of carbon nanotube, based on the graphenylene motif, is investigated using density functional and tight-binding methods. Analogous to conventional graphene-based nanotubes, a two-dimensional graphenylene sheet can be "rolled" into a seamless cylinder in armchair, zigzag, or chiral orientations. The resulting nanotube can be described using the familiar (n,m) nomenclature and possesses 4-, 6-, and 12-membered rings, with three distinct bond lengths, indicating a nonuniform distribution of the electron density. The dodecagonal rings form pores, 3.3 Å in diameter in graphenylene, which become saddle-shaped paraboloids in smaller-diameter nanotubes. Density functional theory predicts zigzag nanotubes to be small-band gap semiconductors, with a generally decreasing band gap as the diameter increases. Interestingly, the calculations predict metallic characteristics for armchair nanotubes with small diameters (<2 nm), and small-band gap semiconducting characteristics for larger-diameter ones. Graphenylene nanotubes with indices mod(n-m,3) = 0 exhibit a band gap approximately equal to that of armchair graphenylene nanotubes with comparable diameter.


Subject(s)
Graphite/chemistry , Nanotubes, Carbon/chemistry , Semiconductors
19.
Adv Mater ; 26(38): 6554-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25103570

ABSTRACT

The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.


Subject(s)
Nanostructures/chemistry , Spectrum Analysis , Optical Phenomena , X-Rays
20.
Science ; 345(6193): 138-9, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25013046
SELECTION OF CITATIONS
SEARCH DETAIL
...