Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Nat Genet ; 56(6): 1245-1256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778242

ABSTRACT

The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that seminal root number has increased during maize domestication followed by a decrease in response to limited water availability in locally adapted varieties. By combining environmental and phenotypic association analyses with linkage mapping, we identified genes linking environmental variation and seminal root number. Functional characterization of the transcription factor ZmHb77 and in silico root modeling provides evidence that reshaping root system architecture by reducing the number of seminal roots and promoting lateral root density is beneficial for the resilience of maize seedlings to drought.


Subject(s)
Adaptation, Physiological , Domestication , Droughts , Plant Roots , Seedlings , Water , Zea mays , Zea mays/genetics , Zea mays/physiology , Plant Roots/genetics , Plant Roots/growth & development , Adaptation, Physiological/genetics , Seedlings/genetics , Water/metabolism , Chromosome Mapping , Phenotype , Gene Expression Regulation, Plant , Plant Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Nat Plants ; 10(4): 598-617, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38514787

ABSTRACT

Beneficial interactions with microorganisms are pivotal for crop performance and resilience. However, it remains unclear how heritable the microbiome is with respect to the host plant genotype and to what extent host genetic mechanisms can modulate plant-microbiota interactions in the face of environmental stresses. Here we surveyed 3,168 root and rhizosphere microbiome samples from 129 accessions of locally adapted Zea, sourced from diverse habitats and grown under control and different stress conditions. We quantified stress treatment and host genotype effects on the microbiome. Plant genotype and source environment were predictive of microbiome abundance. Genome-wide association analysis identified host genetic variants linked to both rhizosphere microbiome abundance and source environment. We identified transposon insertions in a candidate gene linked to both the abundance of a keystone bacterium Massilia in our controlled experiments and total soil nitrogen in the source environment. Isolation and controlled inoculation of Massilia alone can contribute to root development, whole-plant biomass production and adaptation to low nitrogen availability. We conclude that locally adapted maize varieties exert patterns of genetic control on their root and rhizosphere microbiomes that follow variation in their home environments, consistent with a role in tolerance to prevailing stress.


Subject(s)
Microbiota , Plant Roots , Rhizosphere , Zea mays , Zea mays/microbiology , Zea mays/genetics , Microbiota/genetics , Plant Roots/microbiology , Plant Roots/genetics , Soil Microbiology , Genome-Wide Association Study , Genetic Variation , Adaptation, Physiological/genetics , Genotype
3.
Evol Appl ; 17(3): e13673, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38468714

ABSTRACT

Mexican native maize (Zea mays ssp. mays) is adapted to a wide range of climatic and edaphic conditions. Here, we focus specifically on the potential role of root anatomical variation in this adaptation. Given the investment required to characterize root anatomy, we present a machine-learning approach using environmental descriptors to project trait variation from a relatively small training panel onto a larger panel of genotyped and georeferenced Mexican maize accessions. The resulting models defined potential biologically relevant clines across a complex environment that we used subsequently for genotype-environment association. We found evidence of systematic variation in maize root anatomy across Mexico, notably a prevalence of trait combinations favoring a reduction in axial hydraulic conductance in varieties sourced from cooler, drier highland areas. We discuss our results in the context of previously described water-banking strategies and present candidate genes that are associated with both root anatomical and environmental variation. Our strategy is a refinement of standard environmental genome-wide association analysis that is applicable whenever a training set of georeferenced phenotypic data is available.

4.
Mycorrhiza ; 33(5-6): 345-358, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37851276

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) establish symbioses with the major cereal crops, providing plants with increased access to nutrients while enhancing their tolerance to toxic heavy metals. However, not all plant varieties benefit equally from this association. In this study, we used quantitative trait loci (QTL) mapping to evaluate the combined effect of host genotypic variation (G) and AMF across 141 genotypes on the concentration of 20 mineral elements in the leaves and grain of field grown maize (Zea mays spp. mays). Our mapping design included selective incorporation of a castor AMF-incompatibility mutation, allowing estimation of AMF, QTL and QTLxAMF effects by comparison of mycorrhizal and non-mycorrhizal plants. Overall, AMF compatibility was associated with higher concentrations of boron (B), copper (Cu), molybdenum (Mo), phosphorus (P), selenium (Se) and zinc (Zn) and lower concentrations of arsenic (As), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K) and strontium (Sr). In addition to effects on individual elements, pairwise correlation matrices for element concentration differed between mycorrhizal and non-mycorrhizal plants. We mapped 22 element QTLs, including 18 associated with QTLxAMF effects that indicate plant genotype-specific differences in the impact of AMF on the host ionome. Although there is considerable interest in AMF as biofertilizers, it remains challenging to estimate the impact of AMF in the field. Our design illustrates an effective approach for field evaluation of AMF effects. Furthermore, we demonstrate the capacity of the ionome to reveal host genotype-specific variation in the impact of AMF on plant nutrition.


Subject(s)
Mycorrhizae , Mycorrhizae/genetics , Zea mays/microbiology , Plant Roots/microbiology , Symbiosis , Genotype
5.
Plant Direct ; 7(8): e519, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600238

ABSTRACT

With ongoing climate change and the increase in extreme weather events, especially droughts, the challenge of maintaining food security is becoming ever greater. Locally adapted landraces of crops represent a valuable source of adaptation to stressful environments. In the light of future droughts-both by altered soil water supply and increasing atmospheric water demand (vapor pressure deficit [VPD])-plants need to improve their water efficiency. To do so, plants can enhance their access to soil water by improving rhizosphere hydraulic conductivity via the exudation of mucilage. Furthermore, plants can reduce transpirational water loss via stomatal regulation. Although the role of mucilage and stomata regulation on plant water management have been extensively studied, little is known about a possible coordination between root mucilage properties and stomatal sensitivity as well as abiotic drivers shaping the development of drought resistant trait suits within landraces. Mucilage properties and stomatal sensitivity of eight Mexican landraces of Zea mays in contrast with one inbred line were first quantified under controlled conditions and second related to water demand and supply at their respective site of origin. Mucilage physical properties-namely, viscosity, contact angle, and surface tension-differed between the investigated maize varieties. We found strong influences of precipitation seasonality, thus plant water availability, on mucilage production (R 2 = .88, p < .01) and mucilage viscosity (R 2 = .93, p < .01). Further, stomatal sensitivity to increased atmospheric water demand was related to mucilage viscosity and contact angle, both of which are crucial in determining mucilage's water repellent, thus maladaptive, behavior upon soil drying. The identification of landraces with pre-adapted suitable trait sets with regard to drought resistance is of utmost importance, for example, trait combinations such as exhibited in one of the here investigated landraces. Our results suggest a strong environmental selective force of seasonality in plant water availability on mucilage properties as well as regulatory stomatal effects to avoid mucilage's maladaptive potential upon drying and likely delay critical levels of hydraulic dysfunction. By this, landraces from highly seasonal climates may exhibit beneficial mucilage and stomatal traits to prolong plant functioning under edaphic drought. These findings may help breeders to efficiently screen for local landraces with pre-adaptations to drought to ultimately increase crop yield resistance under future climatic variability.

6.
Front Genet ; 14: 1101401, 2023.
Article in English | MEDLINE | ID: mdl-37255716

ABSTRACT

Chili pepper (Capsicum annuum L.) is one of the oldest and most phenotypically diverse pre-Columbian crops of the Americas. Despite the abundance of genetic resources, the use of wild germplasm and landraces in chili pepper breeding is limited. A better understanding of the evolutionary history in chili peppers, particularly in the context of traits of agronomic interest, can contribute to future improvement and conservation of genetic resources. In this study, an F2:3 mapping population derived from a cross between a C. annuum wild accession (Chiltepin) and a cultivated variety (Puya) was used to identify genomic regions associated with 19 domestication and agronomic traits. A genetic map was constructed consisting of 1023 single nucleotide polymorphism (SNP) markers clustered into 12 linkage groups and spanning a total of 1,263.87 cM. A reciprocal translocation that differentiates the domesticated genome from its wild ancestor and other related species was identified between chromosomes 1 and 8. Quantitative trait locus (QTL) analysis detected 20 marker-trait associations for 13 phenotypes, from which 14 corresponded to previously identified loci, and six were novel genomic regions related to previously unexplored domestication-syndrome traits, including form of unripe fruit, seedlessness, deciduous fruit, and growth habit. Our results revealed that the genetic architecture of Capsicum domestication is similar to other domesticated species with few loci with large effects, the presence of QTLs clusters in different genomic regions, and the predominance of domesticated recessive alleles. Our analysis indicates the domestication process in chili pepper has also had an effect on traits not directly related to the domestication syndrome. The information obtained in this study provides a more complete understanding of the genetic basis of Capsicum domestication that can potentially guide strategies for the exploitation of wild alleles.

7.
Mol Ecol Resour ; 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37002860

ABSTRACT

Landscape transcriptomics is an emerging field studying how genome-wide expression patterns reflect dynamic landscape-scale environmental drivers, including habitat, weather, climate, and contaminants, and the subsequent effects on organismal function. This field is benefitting from advancing and increasingly accessible molecular technologies, which in turn are allowing the necessary characterization of transcriptomes from wild individuals distributed across natural landscapes. This research is especially important given the rapid pace of anthropogenic environmental change and potential impacts that span levels of biological organization. We discuss three major themes in landscape transcriptomic research: connecting transcriptome variation across landscapes to environmental variation, generating and testing hypotheses about the mechanisms and evolution of transcriptomic responses to the environment, and applying this knowledge to species conservation and management. We discuss challenges associated with this approach and suggest potential solutions. We conclude that landscape transcriptomics has great promise for addressing fundamental questions in organismal biology, ecology, and evolution, while providing tools needed for conservation and management of species.

8.
Plant Sci ; 326: 111530, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36368482

ABSTRACT

Plant metabolites are the basis of human nutrition and have biological relevance in ecology. Farmers selected plants with favorable characteristics since prehistoric times and improved the cultivars, but without knowledge of underlying mechanisms. Understanding the genetic basis of metabolite production can facilitate the successful breeding of plants with augmented nutritional value. To identify genetic factors related to the metabolic composition in maize, we generated mass profiles of 198 recombinant inbred lines (RILs) and their parents (B73 and Mo17) using direct-injection electrospray ionization mass spectrometry (DLI-ESI MS). Mass profiling allowed the correct clustering of samples according to genotype. We quantified 71 mass features from grains and 236 mass features from leaf extracts. For the corresponding ions, we identified tissue-specific metabolic 'Quantitative Trait Loci' (mQTLs) distributed across the maize genome. These genetic regions could regulate multiple metabolite biosynthesis pathways. Our findings demonstrate that DLI-ESI MS has sufficient analytical resolution to map mQTLs. These identified genetic loci will be helpful in metabolite-focused maize breeding. Mass profiling is a powerful tool for detecting mQTLs in maize and enables the high-throughput screening of loci responsible for metabolite biosynthesis.


Subject(s)
Plant Breeding , Zea mays , Humans , Zea mays/metabolism , Chromosome Mapping , Quantitative Trait Loci/genetics , Genotype , Phenotype
9.
Mol Biol Evol ; 39(11)2022 11 03.
Article in English | MEDLINE | ID: mdl-36327321

ABSTRACT

Maize is a staple food of smallholder farmers living in highland regions up to 4,000 m above sea level worldwide. Mexican and South American highlands are two major highland maize growing regions, and population genetic data suggest the maize's adaptation to these regions occurred largely independently, providing a case study for convergent evolution. To better understand the mechanistic basis of highland adaptation, we crossed maize landraces from 108 highland and lowland sites of Mexico and South America with the inbred line B73 to produce F1 hybrids and grew them in both highland and lowland sites in Mexico. We identified thousands of genes with divergent expression between highland and lowland populations. Hundreds of these genes show patterns of convergent evolution between Mexico and South America. To dissect the genetic architecture of the divergent gene expression, we developed a novel allele-specific expression analysis pipeline to detect genes with divergent functional cis-regulatory variation between highland and lowland populations. We identified hundreds of genes with divergent cis-regulation between highland and lowland landrace alleles, with 20 in common between regions, further suggesting convergence in the genes underlying highland adaptation. Further analyses suggest multiple mechanisms contribute to this convergence in gene regulation. Although the vast majority of evolutionary changes associated with highland adaptation were region specific, our findings highlight an important role for convergence at the gene expression and gene regulation levels as well.


Subject(s)
Adaptation, Physiological , Zea mays , Zea mays/genetics , Alleles , Adaptation, Physiological/genetics , Genetics, Population , Acclimatization
10.
Nat Genet ; 54(11): 1736-1745, 2022 11.
Article in English | MEDLINE | ID: mdl-36266506

ABSTRACT

Maize is a globally valuable commodity and one of the most extensively studied genetic model organisms. However, we know surprisingly little about the extent and potential utility of the genetic variation found in wild relatives of maize. Here, we characterize a high-density genomic variation map from 744 genomes encompassing maize and all wild taxa of the genus Zea, identifying over 70 million single-nucleotide polymorphisms. The variation map reveals evidence of selection within taxa displaying novel adaptations. We focus on adaptive alleles in highland teosinte and temperate maize, highlighting the key role of flowering-time-related pathways in their adaptation. To show the utility of variants in these data, we generate mutant alleles for two flowering-time candidate genes. This work provides an extensive sampling of the genetic diversity of Zea, resolving questions on evolution and identifying adaptive variants for direct use in modern breeding.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Adaptation, Physiological/genetics , Base Sequence , Alleles , Genetic Variation/genetics
11.
Plant Direct ; 6(7): e416, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35844781

ABSTRACT

Plant PHO1 proteins play a central role in the translocation and sensing of inorganic phosphate. The maize (Zea mays ssp. mays) genome encodes two co-orthologs of the Arabidopsis PHO1 gene, designated ZmPho1;2a and ZmPho1;2b. Here, we report the characterization of the transposon footprint allele Zmpho1;2a'-m1.1, which we refer to hereafter as pho1;2a. The pho1;2a allele is a stable derivative formed by excision of an Activator transposable element from the ZmPho1;2a gene. The pho1;2a allele contains an 8-bp insertion at the point of transposon excision that disrupts the reading frame and is predicted to generate a premature translational stop. We show that the pho1;2a allele is linked to a dosage-dependent reduction in Pho1;2a transcript accumulation and a mild reduction in seedling growth. Characterization of shoot and root transcriptomes under full nutrient, low nitrogen, low phosphorus, and combined low nitrogen and low phosphorus conditions identified 1100 differentially expressed genes between wild-type plants and plants carrying the pho1;2a mutation. Of these 1100 genes, 966 were upregulated in plants carrying pho1;2a, indicating the wild-type PHO1;2a to predominantly impact negative gene regulation. Gene set enrichment analysis of the pho1;2a-misregulated genes revealed associations with phytohormone signaling and the phosphate starvation response. In roots, differential expression was broadly consistent across all nutrient conditions. In leaves, differential expression was largely specific to low phosphorus and combined low nitrogen and low phosphorus conditions. Of 276 genes upregulated in the leaves of pho1;2a mutants in the low phosphorus condition, 153 were themselves induced in wild-type plants with respect to the full nutrient condition. Our observations suggest that Pho1;2a functions in the fine-tuning of the transcriptional response to phosphate starvation through maintenance and/or sensing of plant phosphate status.

12.
Proc Natl Acad Sci U S A ; 119(27): e2100036119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35771940

ABSTRACT

Native Americans domesticated maize (Zea mays ssp. mays) from lowland teosinte parviglumis (Zea mays ssp. parviglumis) in the warm Mexican southwest and brought it to the highlands of Mexico and South America where it was exposed to lower temperatures that imposed strong selection on flowering time. Phospholipids are important metabolites in plant responses to low-temperature and phosphorus availability and have been suggested to influence flowering time. Here, we combined linkage mapping with genome scans to identify High PhosphatidylCholine 1 (HPC1), a gene that encodes a phospholipase A1 enzyme, as a major driver of phospholipid variation in highland maize. Common garden experiments demonstrated strong genotype-by-environment interactions associated with variation at HPC1, with the highland HPC1 allele leading to higher fitness in highlands, possibly by hastening flowering. The highland maize HPC1 variant resulted in impaired function of the encoded protein due to a polymorphism in a highly conserved sequence. A meta-analysis across HPC1 orthologs indicated a strong association between the identity of the amino acid at this position and optimal growth in prokaryotes. Mutagenesis of HPC1 via genome editing validated its role in regulating phospholipid metabolism. Finally, we showed that the highland HPC1 allele entered cultivated maize by introgression from the wild highland teosinte Zea mays ssp. mexicana and has been maintained in maize breeding lines from the Northern United States, Canada, and Europe. Thus, HPC1 introgressed from teosinte mexicana underlies a large metabolic QTL that modulates phosphatidylcholine levels and has an adaptive effect at least in part via induction of early flowering time.


Subject(s)
Adaptation, Physiological , Flowers , Gene-Environment Interaction , Phosphatidylcholines , Phospholipases A1 , Plant Proteins , Zea mays , Alleles , Chromosome Mapping , Flowers/genetics , Flowers/metabolism , Genes, Plant , Genetic Linkage , Phosphatidylcholines/metabolism , Phospholipases A1/classification , Phospholipases A1/genetics , Phospholipases A1/metabolism , Plant Proteins/classification , Plant Proteins/genetics , Plant Proteins/metabolism , Zea mays/genetics , Zea mays/growth & development
13.
Evol Appl ; 15(5): 817-837, 2022 May.
Article in English | MEDLINE | ID: mdl-35603032

ABSTRACT

Populations are locally adapted when they exhibit higher fitness than foreign populations in their native habitat. Maize landrace adaptations to highland and lowland conditions are of interest to researchers and breeders. To determine the prevalence and strength of local adaptation in maize landraces, we performed a reciprocal transplant experiment across an elevational gradient in Mexico. We grew 120 landraces, grouped into four populations (Mexican Highland, Mexican Lowland, South American Highland, South American Lowland), in Mexican highland and lowland common gardens and collected phenotypes relevant to fitness and known highland-adaptive traits such as anthocyanin pigmentation and macrohair density. 67k DArTseq markers were generated from field specimens to allow comparisons between phenotypic patterns and population genetic structure. We found phenotypic patterns consistent with local adaptation, though these patterns differ between the Mexican and South American populations. Quantitative trait differentiation (Q ST) was greater than neutral allele frequency differentiation (F ST) for many traits, signaling directional selection between pairs of populations. All populations exhibited higher fitness metric values when grown at their native elevation, and Mexican landraces had higher fitness than South American landraces when grown in these Mexican sites. As environmental distance between landraces' native collection sites and common garden sites increased, fitness values dropped, suggesting landraces are adapted to environmental conditions at their natal sites. Correlations between fitness and anthocyanin pigmentation and macrohair traits were stronger in the highland site than the lowland site, supporting their status as highland-adaptive. These results give substance to the long-held presumption of local adaptation of New World maize landraces to elevation and other environmental variables across North and South America.

14.
G3 (Bethesda) ; 12(3)2022 03 04.
Article in English | MEDLINE | ID: mdl-35100386

ABSTRACT

Generations of farmer selection in the central Mexican highlands have produced unique maize varieties adapted to the challenges of the local environment. In addition to possessing great agronomic and cultural value, Mexican highland maize represents a good system for the study of local adaptation and acquisition of adaptive phenotypes under cultivation. In this study, we characterize a recombinant inbred line population derived from the B73 reference line and the Mexican highland maize variety Palomero Toluqueño. B73 and Palomero Toluqueño showed classic rank-changing differences in performance between lowland and highland field sites, indicative of local adaptation. Quantitative trait mapping identified genomic regions linked to effects on yield components that were conditionally expressed depending on the environment. For the principal genomic regions associated with ear weight and total kernel number, the Palomero Toluqueño allele conferred an advantage specifically in the highland site, consistent with local adaptation. We identified Palomero Toluqueño alleles associated with expression of characteristic highland traits, including reduced tassel branching, increased sheath pigmentation and the presence of sheath macrohairs. The oligogenic architecture of these three morphological traits supports their role in adaptation, suggesting they have arisen from consistent directional selection acting at distinct points across the genome. We discuss these results in the context of the origin of phenotypic novelty during selection, commenting on the role of de novo mutation and the acquisition of adaptive variation by gene flow from endemic wild relatives.


Subject(s)
Adaptation, Physiological , Zea mays , Acclimatization , Adaptation, Physiological/genetics , Genomics , Phenotype , Zea mays/genetics , Zea mays/metabolism
15.
BMC Plant Biol ; 21(1): 259, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34090337

ABSTRACT

BACKGROUND: Nitrogen (N) and phosphorus (P) are macronutrients essential for crop growth and productivity. In cultivated fields, N and P levels are rarely sufficient, contributing to the gap between realized and potential production. Fertilizer application increases nutrient availability, but is not available to all farmers, nor are current rates of application sustainable or environmentally desirable. Transcriptomic studies of cereal crops have revealed dramatic responses to either low N or low P single stress treatments. In the field, however, levels of both N and P may be suboptimal. The interaction between N and P starvation responses remains to be fully characterized. RESULTS: We characterized growth and root and leaf transcriptomes of young maize plants under nutrient replete, low N, low P or combined low NP conditions. We identified 1555 genes to respond to our nutrient treatments, in one or both tissues. A large group of genes, including many classical P starvation response genes, were regulated antagonistically between low N and P conditions. An additional experiment over a range of N availability indicated that a mild reduction in N levels was sufficient to repress the low P induction of P starvation genes. Although expression of P transporter genes was repressed under low N or low NP, we confirmed earlier reports of P hyper accumulation under N limitation. CONCLUSIONS: Transcriptional responses to low N or P were distinct, with few genes responding in a similar way to the two single stress treatments. In combined NP stress, the low N response dominated, and the P starvation response was largely suppressed. A mild reduction in N availability was sufficient to repress the induction of P starvation associated genes. We conclude that activation of the transcriptional response to P starvation in maize is contingent on N availability.


Subject(s)
Nitrogen/pharmacology , Phosphorus/pharmacology , Zea mays/drug effects , Zea mays/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Nitrogen/administration & dosage , Phosphorus/administration & dosage , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Seedlings/growth & development , Stress, Physiological/drug effects , Zea mays/metabolism
16.
Int J Dev Biol ; 65(4-5-6): 383-394, 2021.
Article in English | MEDLINE | ID: mdl-32930384

ABSTRACT

Mediator is a conserved transcriptional co-activator that links transcription factors bound at enhancer elements to RNA Polymerase II. Mediator-RNA Polymerase II interactions can be sterically hindered by the Cyclin Dependent Kinase 8 (CDK8) module, a submodule of Mediator that acts to repress transcription in response to discrete cellular and environmental cues. The CDK8 module is conserved in all eukaryotes and consists of 4 proteins: CDK8, CYCLIN C (CYCC), MED12, and MED13. In this study, we have characterized the CDK8 module of Mediator in maize using genomic, molecular and functional resources. The maize genome contains single copy genes for Cdk8, CycC, and Med13, and two genes for Med12. Analysis of expression data for the CDK8 module demonstrated that all five genes are broadly expressed in maize tissues, and change their expression in response to phosphate and nitrogen limitation. We performed Dissociation (Ds) insertional mutagenesis, recovering two independent insertions in the ZmMed12a gene, one of which produces a truncated transcript. Our molecular identification of the maize CDK8 module, assays of CDK8 module expression under nutrient limitation, and characterization of transposon insertions in ZmMed12a establish the basis for molecular and functional studies of the role of these important transcriptional regulators in development and nutrient homeostasis in Zea mays.


Subject(s)
Cyclin-Dependent Kinase 8 , Genes, Plant , Zea mays , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , DNA Transposable Elements , Mutagenesis , RNA Polymerase II/metabolism , Transcription Factors/metabolism , Zea mays/genetics
17.
PLoS Genet ; 16(12): e1009213, 2020 12.
Article in English | MEDLINE | ID: mdl-33270639

ABSTRACT

Chromosomal inversions play an important role in local adaptation. Inversions can capture multiple locally adaptive functional variants in a linked block by repressing recombination. However, this recombination suppression makes it difficult to identify the genetic mechanisms underlying an inversion's role in adaptation. In this study, we used large-scale transcriptomic data to dissect the functional importance of a 13 Mb inversion locus (Inv4m) found almost exclusively in highland populations of maize (Zea mays ssp. mays). Inv4m was introgressed into highland maize from the wild relative Zea mays ssp. mexicana, also present in the highlands of Mexico, and is thought to be important for the adaptation of these populations to cultivation in highland environments. However, the specific genetic variants and traits that underlie this adaptation are not known. We created two families segregating for the standard and inverted haplotypes of Inv4m in a common genetic background and measured gene expression effects associated with the inversion across 9 tissues in two experimental conditions. With these data, we quantified both the global transcriptomic effects of the highland Inv4m haplotype, and the local cis-regulatory variation present within the locus. We found diverse physiological effects of Inv4m across the 9 tissues, including a strong effect on the expression of genes involved in photosynthesis and chloroplast physiology. Although we could not confidently identify the causal alleles within Inv4m, this research accelerates progress towards understanding this inversion and will guide future research on these important genomic features.


Subject(s)
Chromosome Inversion , Gene Expression Regulation, Plant , Zea mays/genetics , Adaptation, Physiological , Haplotypes , Polymorphism, Genetic , Transcriptome , Zea mays/metabolism
18.
Plants (Basel) ; 9(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255472

ABSTRACT

Phosphoglycerate kinase (PGK, E.C. 2.7.2.3) interconverts ADP + 1,3-bisphospho-glycerate (1,3-bPGA) to ATP + 3-phosphoglycerate (3PGA). While most bacteria have a single pgk gene and mammals possess two copies, plant genomes contain three or more PGK genes. In this study, we identified five Pgk genes in the Zea mays var. B73 genome, predicted to encode proteins targeted to different subcellular compartments: ZmPgk1, ZmPgk2, and ZmPgk4 (chloroplast), ZmPgk3 (cytosol), and ZmPgk5 (nucleus). The expression of ZmPgk3 was highest in non-photosynthetic tissues (roots and cobs), where PGK activity was also greatest, consistent with a function in glycolysis. Green tissues (leaf blade and husk leaf) showed intermediate levels of PGK activity, and predominantly expressed ZmPgk1 and ZmPgk2, suggesting involvement in photosynthetic metabolism. ZmPgk5 was weakly expressed and ZmPgk4 was not detected in any tissue. Phylogenetic analysis showed that the photosynthetic and glycolytic isozymes of plants clustered together, but were distinct from PGKs of animals, fungi, protozoa, and bacteria, indicating that photosynthetic and glycolytic isozymes of plants diversified after the divergence of the plant lineage from other groups. These results show the distinct role of each PGK in maize and provide the basis for future studies into the regulation and function of this key enzyme.

19.
Elife ; 92020 11 19.
Article in English | MEDLINE | ID: mdl-33211006

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are ubiquitous in cultivated soils, forming symbiotic relationships with the roots of major crop species. Studies in controlled conditions have demonstrated the potential of AMF to enhance the growth of host plants. However, it is difficult to estimate the actual benefit in the field, not least because of the lack of suitable AMF-free controls. Here we implement a novel strategy using the selective incorporation of AMF-resistance into a genetic mapping population to evaluate maize response to AMF. We found AMF to account for about one-third of the grain production in a medium input field, as well as to affect the relative performance of different plant genotypes. Characterization of the genetic architecture of the host response indicated a trade-off between mycorrhizal dependence and benefit. We identified several QTL linked to host benefit, supporting the feasibility of breeding crops to maximize profit from symbiosis with AMF.


Subject(s)
Mycorrhizae/physiology , Plant Proteins/metabolism , Zea mays/metabolism , Zea mays/microbiology , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Roots/microbiology , Soil , Symbiosis
20.
Mol Biol Evol ; 37(6): 1593-1603, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32031611

ABSTRACT

The process of domestication requires the rapid transformation of the wild morphology into the cultivated forms that humans select for. This process often takes place through changes in the regulation of genes, yet, there is no definite pattern on the role of cis- and trans-acting regulatory variations in the domestication of the fruit among crops. Using allele-specific expression and network analyses, we characterized the regulatory patterns and the inheritance of gene expression in wild and cultivated accessions of chili pepper, a crop with remarkable fruit morphological variation. We propose that gene expression differences associated to the cultivated form are best explained by cis-regulatory hubs acting through trans-regulatory cascades. We show that in cultivated chili, the expression of genes associated with fruit morphology is partially recessive with respect to those in the wild relative, consistent with the hybrid fruit phenotype. Decreased expression of fruit maturation and growth genes in cultivated chili suggest that selection for loss-of-function took place in its domestication. Trans-regulatory changes underlie the majority of the genes showing regulatory divergence and had larger effect sizes on gene expression than cis-regulatory variants. Network analysis of selected cis-regulated genes, including ARP9 and MED25, indicated their interaction with many transcription factors involved in organ growth and fruit ripening. Differentially expressed genes linked to cis-regulatory variants and their interactions with downstream trans-acting genes have the potential to drive the morphological differences observed between wild and cultivated fruits and provide an attractive mechanism of morphological transformation during the domestication of the chili pepper.


Subject(s)
Capsicum/genetics , Domestication , Regulatory Elements, Transcriptional , Capsicum/anatomy & histology , Capsicum/growth & development , Fruit/anatomy & histology , Fruit/genetics , Fruit/growth & development , Genes, Recessive
SELECTION OF CITATIONS
SEARCH DETAIL
...