Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 227: 106232, 2023 03.
Article in English | MEDLINE | ID: mdl-36476636

ABSTRACT

In this study, we have described simple and efficient methodology for the metal-promoted (Cu2I2) preparation of steroidal ethynyl selenides. The compounds were characterized using 1H, 13C and 77Se NMR, FT IR spectroscopy, and MS analysis. A proposed mechanism of the metal-promoted reaction involves the formation of a σ-bound copper acetylide. Due to the fact that organoselenium-based compounds possess a pleiotropic properties and associated with their promising biological activities, in the next step of the study biocompatibility and anticancer activity of the synthesized compounds was evaluated. Steroidal selenides were tested in vitro against estrogen-depend breast cancer cells MCF-7 using spectrophotometric, fluorometric and luminometric methods. Designed selenides showed high hemocompatibility, lack of toxicity against cardiomyocytes cell and great anti-cancer activity in vitro against estrogen-depend breast cancer cells upon 24 h of treatment. We revealed that selenides decrease the viability and proliferation ability of MCF-7 cells by induction of cell apoptosis. It has been noted that the overproduction of reactive oxygen species (ROS) and associated with its activation of Caspase 3/7 are a major mechanism that is responsible of selenides-caused cell death. These data indicate that organoselenium based compounds have great antineoplastic potential and might be developed as novel class of agents dedicated to the breast-cancer therapies.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Molecular Structure , Structure-Activity Relationship , Cell Proliferation , Drug Screening Assays, Antitumor , MCF-7 Cells , Steroids/pharmacology , Steroids/therapeutic use , Breast Neoplasms/metabolism , Metals , Estrogens/pharmacology , Apoptosis , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL