Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Molecules ; 28(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36771018

ABSTRACT

Fungal extracts possess potential anticancer activity against many malignant neoplastic diseases. In this research, we focused on the evaluation of Heterobasidion annosum (HA) extract in colorectal cancer in an in vivo model. The mice with implanted DLD-1 human cancer cells were given HA extract, the referential drug-5-fluorouracil (5FU), or were treated with its combination. Thereafter, tumor volume was measured and apoptotic proteins such as caspase-8, caspase-3, p53, Bcl-2, and survivin were analyzed in mice serum with an ELISA assay. The Ki-67 protein was assessed in tumor cells by immunohistochemical examination. The biggest volumes of tumors were confirmed in the DLD-1 group, while the lowest were observed in the population treated with 5FU and/or HA extract. The assessment of apoptosis showed increased concentrations of caspase 8 and p53 protein after the combined administration of 5FU and HA extract. The levels of survivin and Bcl-2 were decreased in all tested groups compared to the DLD-1 group. Moreover, we observed a positive reaction for Ki-67 protein in all tested groups. Our findings confirm the apoptotic effect of extract given alone or with 5FU. The obtained results are innovative and provide a basis for further research concerning the antitumor activity of the HA extract, especially in the range of its interaction with an anticancer chemotherapeutic agent.


Subject(s)
Colorectal Neoplasms , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Apoptosis , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Ki-67 Antigen , Proto-Oncogene Proteins c-bcl-2 , Survivin , Xenograft Model Antitumor Assays
2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674883

ABSTRACT

Colorectal cancer is the fourth most common cancer worldwide and the third most frequently diagnosed form of cancer associated with high mortality rates. Recently, targeted drug delivery systems have been under increasing attention owing to advantages such as high therapeutic effectiveness with a significant depletion in adverse events. In this report, we describe the biocompatible and thermoresponsive FA-conjugated PHEA-b-PNIPAAm copolymers as nanocarriers for the delivery of 5-FU. The block copolymers were obtained using RAFT (Reversible Addition-Fragmentation chain Transfer) polymerization and were characterized by methods such as SEC (Size Exclusion Chromatography), NMR (Nuclear Magnetic Resonance), UV-Vis (Ultraviolet-Visible), FT-IR (Fourier Transform Infrared) spectroscopy, and TGA (Thermogravimetric Analysis). Nanoparticles were formed from polymers with and without the drug-5-fluorouracil, which was confirmed using DLS (Dynamic Light Scattering), zeta potential measurements, and TEM (Transmission Electron Microscopy) imaging. The cloud points of the polymers were found to be close to the temperature of the human body. Eventually, polymeric carriers were tested as drug delivery systems for the safety, compatibility, and targeting of colorectal cancer cells (CRC). The biological evaluation indicated high compatibility with the representative host cells. Furthermore, it showed that proposed nanosystems might have therapeutic potential as mitigators for 5-FU-induced monocytopenia, cardiotoxicity, and other chemotherapy-associated disorders. Moreover, results show increased cytotoxicity against cancer cells compared to the drug, including a line with a drug resistance phenotype. Additionally, the ability of synthesized carriers to induce apoptosis and necrosis in treated CRC cells has been confirmed. Undoubtedly, the presented aspects of colorectal cancer therapy promise future solutions to overcome the conventional limitations of current treatment regimens for this type of cancer and to improve the quality of life of the patients.


Subject(s)
Colorectal Neoplasms , Nanoparticles , Humans , Fluorouracil/pharmacology , Fluorouracil/chemistry , Drug Carriers/chemistry , Folic Acid/chemistry , Spectroscopy, Fourier Transform Infrared , Quality of Life , Polymers/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Colorectal Neoplasms/drug therapy
3.
J Steroid Biochem Mol Biol ; 227: 106232, 2023 03.
Article in English | MEDLINE | ID: mdl-36476636

ABSTRACT

In this study, we have described simple and efficient methodology for the metal-promoted (Cu2I2) preparation of steroidal ethynyl selenides. The compounds were characterized using 1H, 13C and 77Se NMR, FT IR spectroscopy, and MS analysis. A proposed mechanism of the metal-promoted reaction involves the formation of a σ-bound copper acetylide. Due to the fact that organoselenium-based compounds possess a pleiotropic properties and associated with their promising biological activities, in the next step of the study biocompatibility and anticancer activity of the synthesized compounds was evaluated. Steroidal selenides were tested in vitro against estrogen-depend breast cancer cells MCF-7 using spectrophotometric, fluorometric and luminometric methods. Designed selenides showed high hemocompatibility, lack of toxicity against cardiomyocytes cell and great anti-cancer activity in vitro against estrogen-depend breast cancer cells upon 24 h of treatment. We revealed that selenides decrease the viability and proliferation ability of MCF-7 cells by induction of cell apoptosis. It has been noted that the overproduction of reactive oxygen species (ROS) and associated with its activation of Caspase 3/7 are a major mechanism that is responsible of selenides-caused cell death. These data indicate that organoselenium based compounds have great antineoplastic potential and might be developed as novel class of agents dedicated to the breast-cancer therapies.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Molecular Structure , Structure-Activity Relationship , Cell Proliferation , Drug Screening Assays, Antitumor , MCF-7 Cells , Steroids/pharmacology , Steroids/therapeutic use , Breast Neoplasms/metabolism , Metals , Estrogens/pharmacology , Apoptosis , Cell Line, Tumor
4.
Int J Mol Sci ; 25(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38203637

ABSTRACT

Statins have been used in the treatment of hyperlipidemia, both as monotherapy and in combination therapy. Natural fermentation processes of fungi such as Monascus spp., Penicillium spp., Aspergillus terreus, and Pleurotus ostreatus have given rise to natural statins. Compactin (mevastatin), the original naturally occurring statin, is the primary biotransformation substrate in the manufacturing process of marketed drugs. Statins are classified into natural, semi-synthetic derivatives of natural statins, and synthetic ones. Synthetic statins differ from natural statins in their structural composition, with the only common feature being the HMG-CoA-like moiety responsible for suppressing HMG-CoA reductase. Statins do not differ significantly regarding their pleiotropic and adverse effects, but their characteristics depend on their pharmacokinetic parameters and chemical properties. This paper focuses on describing the processes of obtaining natural statins, detailing the pharmacokinetics of available statins, divided into natural and synthetic, and indicating their pleiotropic effects.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Pharmacy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Fungi , Lovastatin/pharmacology
5.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806024

ABSTRACT

Imidazolium salts (IMSs) are the subject of many studies showing their anticancer activities. In this research, a series of novel imidazolium salts substituted with lithocholic acid (LCA) and alkyl chains of various lengths (S1-S10) were evaluated against colon cancer cells. A significant reduction in the viability and metabolic activity was obtained in vitro for DLD-1 and HT-29 cell lines when treated with tested salts. The results showed that the activities of tested agents are directly related to the alkyl chain length, where S6-S8 compounds were the most cytotoxic against the DLD-1 line and S4-S10 against HT-29. The research performed on the xenograft model of mice demonstrated a lower tendency of tumor growth in the group receiving compound S6, compared with the group receiving 5-fluorouracil (5-FU). Obtained results indicate the activity of S6 in the induction of apoptosis and necrosis in induced colorectal cancer. LCA-based imidazolium salts may be candidates for chemotherapeutic agents against colorectal cancer.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Humans , Lithocholic Acid/pharmacology , Mice , Salts/pharmacology
6.
Crit Rev Food Sci Nutr ; 62(21): 5679-5704, 2022.
Article in English | MEDLINE | ID: mdl-33715524

ABSTRACT

Diabetes mellitus is the most common metabolic disorder contributing to significant morbidity and mortality in humans. Different preventive and therapeutic agents, as well as various pharmacological strategies or non-pharmacological tools, improve the glycemic profile of diabetic patients. Isomaltulose, d-tagatose, and trehalose are naturally occurring, low glycemic sugars that are not synthesized by humans but widely used in food industries. Various studies have shown that these carbohydrates can regulate glucose metabolism and provide support in maintaining glucose homeostasis in patients with diabetes, but also can improve insulin response, subsequently leading to better control of hyperglycemia. In this review, we discussed the anti-hyperglycemic effects of isomaltulose, D-tagatose, and trehalose, comparing their properties with other known sweeteners, and highlighting their importance for the development of the pharmaceutical and food industries.


Subject(s)
Diabetes Mellitus , Trehalose , Blood Glucose/metabolism , Diabetes Mellitus/drug therapy , Glycemic Control , Hexoses , Humans , Isomaltose/analogs & derivatives , Isomaltose/therapeutic use , Trehalose/pharmacology
7.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830061

ABSTRACT

It is established that high rates of morbidity and mortality caused by fungal infections are related to the current limited number of antifungal drugs and the toxicity of these agents. Imidazolium salts as azole derivatives can be successfully used in the treatment of fungal infections in humans. Steroid-functionalized imidazolium salts were synthesized using a new, more efficient method. As a result, 20 salts were obtained with high yields, 12 of which were synthesized and characterized for the first time. They were derivatives of lithocholic acid and 3-oxo-23,24-dinorchol-4-ene-22-al and were fully characterized by 1H and 13C nuclear magnetic resonance (NMR), infrared spectroscopy (IR), and high resolution mass spectrometry (HRMS). Due to the excellent activity against bacteria and Candida albicans, new research was extended to include tests on five species of pathogenic fungi and molds: Aspergillus niger ATCC 16888, Aspergillus fumigatus ATCC 204305, Trichophyton mentagrophytes ATCC 9533, Cryptococcus neoformans ATCC 14116, and Microsporum canis ATCC 11621. The results showed that the new salts are almost universal antifungal agents and have a broad spectrum of activity against other human pathogens. To initially assess the safety of the synthesized salts, hemocompatibility with host cells and cytotoxicity were also examined. No toxicity was observed at the concentration at which the compounds were active against pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Imidazoles/pharmacology , Steroids/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Bacteria/drug effects , Cell Line , Cell Survival/drug effects , Fungi/drug effects , Hemolysis/drug effects , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Mycoses/drug therapy , Salts/chemical synthesis , Salts/chemistry , Salts/pharmacology , Steroids/chemical synthesis , Steroids/chemistry
8.
Article in English | MEDLINE | ID: mdl-32690630

ABSTRACT

INTRODUCTION: Identification of physiological factors influencing susceptibility to insulin resistance and type 2 diabetes (T2D) remains an important challenge for biology and medicine. Numerous studies reported energy expenditures as one of those components directly linked to T2D, with noticeable increase of basal metabolic rate (BMR) associated with the progression of insulin resistance. Conversely, the putative link between genetic, rather than phenotypic, determination of BMR and predisposition to development of T2D remains little studied. In particular, low BMR may constitute a considerable risk factor predisposing to development of T2D. RESEARCH DESIGN AND METHODS: We analyzed the development of insulin resistance and T2D in 20-week-old male laboratory mice originating from three independent genetic line types. Two of those lines were subjected to divergent, non-replicated selection towards high or low body mass-corrected BMR. The third line type was non-selected and consisted of randomly bred animals serving as an outgroup (reference) to the selected line types. To induce insulin resistance, mice were fed for 8 weeks with a high fat diet; the T2D was induced by injection with a single dose of streptozotocin and further promotion with high fat diet. As markers for insulin resistance and T2D advancement, we followed the changes in body mass, fasting blood glucose, insulin level, lipid profile and mTOR expression. RESULTS: We found BMR-associated differentiation in standard diabetic indexes between studied metabolic lines. In particular, mice with low BMR were characterized by faster body mass gain, blood glucose gain and deterioration in lipid profile. In contrast, high BMR mice were characterized by markedly higher expression of the mTOR, which may be associated with much slower development of T2D. CONCLUSIONS: Our study suggests that genetically determined low BMR makeup involves metabolism-specific pathways increasing the risk of development of insulin resistance and T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Basal Metabolism , Blood Glucose , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/genetics , Insulin Resistance/genetics , Male , Mice , Risk Factors
9.
Int J Mol Sci ; 21(10)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414138

ABSTRACT

Application of substances from medicinal mushrooms is one of the interesting approaches to improve cancer therapy. In this study, we commenced a new attempt in the field of Heterobasidion annosum (Fr.) Bref. sensu lato to further extend our knowledge on this basidiomycete fungus. For this purpose, analysis of the active substances of Heterobasidion annosum methanolic extract and also its influence on colorectal cancer in terms of in vitro and in vivo experiments were performed. In vivo studies on mice were conducted to verify its acute toxicity and to further affirm its anticancer potential. Results indicated that all the most common substances of best known medicinal mushrooms that are also responsible for their biological activity are present in tested extracts. In vitro tests showed a high hemocompatibility and a significant decrease in viability and proliferation of DLD-1 cells in a concentration-dependent manner of Heterobasidion annosum extract. The studies performed on xenograft model of mice showed lower tendency of tumor growth in the group of mice receiving Heterobasidion annosum extract as well as mild or moderate toxicity. Obtained results suggest beneficial potential of Heterobasidion annosum against colon cancer as cytotoxic agent or as adjuvant anticancer therapy.


Subject(s)
Basidiomycota/chemistry , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Plant Extracts/pharmacology , Animals , Apoptosis/drug effects , Colonic Neoplasms/pathology , Humans , Mice , Plant Extracts/chemistry , Xenograft Model Antitumor Assays
10.
J Comp Physiol B ; 190(1): 101-112, 2020 01.
Article in English | MEDLINE | ID: mdl-31873784

ABSTRACT

Cardiovascular diseases (CVD) are one of the most common causes of mortality likely genetically linked to the variation in basal metabolic rate (BMR). A robust test of the significance of such association may be provided by artificial selection experiments on animals selected for diversification of BMR. Here we asked whether genetically determined differences in BMR correlate with anatomical shift in endothelium structure and if so, the relaxation and contraction responses of the aorta in mice from two lines of Swiss-Webster laboratory mice (Mus musculus) divergently selected for high or low BMR (HBMR and LBMR lines, respectively). Functional and structural study of aorta showed that a selection for divergent BMR resulted in the between-line difference in diastolic aortic capacity. The relaxation was stronger in aorta of the HBMR mice, which may stem from greater flexibility of aorta mediated by higher activity of Ca2+-activated K+ channels. Structural examination also indicated that HBMR mice had significantly thicker aorta's middle layer compared to LBMR animals. Such changes may promote arterial stiffness predisposing to cardiovascular diseases. BMR-related differences in the structure and relaxation ability of aortas in studied animals may be reminiscent of potential risk factors in the development of CVD in humans.


Subject(s)
Aorta/anatomy & histology , Aorta/metabolism , Animals , Basal Metabolism , Body Weight , Endothelium/cytology , Endothelium/metabolism , Male , Mice , Potassium Channels, Calcium-Activated/metabolism
11.
BMC Complement Altern Med ; 13: 50, 2013 Feb 27.
Article in English | MEDLINE | ID: mdl-23445763

ABSTRACT

BACKGROUND: Propolis is a honey bee product which contains many active compounds, such as CAPE or chrysin, and has many beneficial activities. Recently, its anti-tumor properties have been discussed. We have tested whether the ethanolic extract of propolis (EEP) interferes with temozolomide (TMZ) to inhibit U87MG cell line growth. METHODS: The U87MG glioblastoma cell line was exposed to TMZ (10-100 µM), EEP (10-100 µg/ml) or a mixture of TMZ and EEP during 24, 48 or 72 hours. The cell division was examined by the H3-thymidine incorporation, while the western blot method was used for detection of p65 subunit of NF-κB and ELISA test to measure the concentration of its p50 subunit in the nucleus. RESULTS: We have found that both, TMZ and EEP administrated alone, had a dose- and time-dependent inhibitory effect on the U87MG cell line growth, which was manifested by gradual reduction of cell viability and alterations in proliferation rate. The anti-tumor effect of TMZ (20 µM) was enhanced by EEP, which was especially well observed after a short time of exposition, where simultaneous usage of TMZ and EEP resulted in a higher degree of growth inhibition than each biological factor used separately. In addition, cells treated with TMZ presented no changes in NF-κB activity in prolonged time of treatment and EEP only slightly reduced the nuclear translocation of this transcription factor. In turn, the combined incubation with TMZ and EEP led to an approximately double reduction of NF-κB nuclear localization. CONCLUSIONS: We conclude that EEP presents cytotoxic properties and may cooperate with TMZ synergistically enhancing its growth inhibiting activity against glioblastoma U87MG cell line. This phenomenon may be at least partially mediated by a reduced activity of NF-κB.


Subject(s)
Antineoplastic Agents/therapeutic use , Apitherapy , Dacarbazine/analogs & derivatives , Glioblastoma/drug therapy , NF-kappa B/metabolism , Propolis/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Biological Transport , Cell Line, Tumor , Cell Nucleus , Cell Proliferation/drug effects , Cell Survival/drug effects , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Dose-Response Relationship, Drug , Drug Synergism , Glioblastoma/metabolism , Humans , Propolis/pharmacology , Temozolomide
12.
Folia Histochem Cytobiol ; 50(1): 25-37, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22532133

ABSTRACT

Propolis and its compounds have been the subject of many studies due to their antimicrobial and antiinflammatory activity; however, it is now known that they also possess antitumor properties. This review aims to summarize the results of studies on the mechanism of activity of propolis and its active compounds such as CAPE and chrysin in the apoptotic process, and their influence on the proliferation of cancer cells. Our review shows that propolis and its presented compounds induce apoptosis pathways in cancer cells. The antiproliferative effects of propolis, CAPE or chrysin in cancer cells are the result of the suppression of complexes of cyclins, as well as cell cycle arrest. The results of in vitro and in vivo studies suggest that propolis, CAPE and chrysin may inhibit tumor cell progression and may be useful as potential chemotherapeutic or chemopreventive anticancer drugs.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Propolis/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Phytotherapy , Propolis/chemistry , Structure-Activity Relationship
13.
FEBS J ; 279(11): 1943-52, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22429392

ABSTRACT

Diabetes is associated with disturbances of brain activity and cognitive impairment. We hypothesize that ceramides may constitute an important contribution to diabetes-linked neuro-dysfunction. In our study we used rats injected with streptozotocin (STZ) as a model of severe hyperglycemia. Using the gas-liquid chromatography technique we found a significant increase of ceramide content in brains and a decrease in plasma of diabetic rats. The inhibitor of serine palmitoyltransferase, myriocin, reduced ceramide generation in hyperglycemic brains, although injected alone it exerted a paradoxical effect of ceramide upregulation. Myriocin had no impact on ceramide concentration in the plasma of either control or diabetic rats. The level of ceramide saturated fatty acids was elevated whereas the level of ceramide poly-unsaturated fatty acids was downregulated in brains of all experimental groups. The concentration of ceramide mono-unsaturated fatty acids remained unchanged. The pattern of individual ceramide species was altered depending on treatment. We noted an STZ-evoked increase of brain ceramide C16:0, C18:0 and C20:0 and a strong decline in ceramide C18:2 fatty acid levels. Some changes of brain ceramide pattern were modified by myriocin. We found a decreased amount of total ceramide-ω-6 fatty acids in STZ-treated rat brains and no changes in ceramide-ω-3 concentration. We conclude that ceramides may be important mediators of diabetes-accompanied brain dysfunction.


Subject(s)
Ceramides/chemistry , Diabetes Mellitus, Experimental/metabolism , Fatty Acids/chemistry , Hyperglycemia/metabolism , Animals , Brain , Ceramides/metabolism , Chromatography, Gas , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Enzyme Inhibitors/administration & dosage , Fatty Acids/metabolism , Fatty Acids, Monounsaturated/administration & dosage , Hyperglycemia/complications , Hyperglycemia/physiopathology , Male , Rats , Rats, Wistar , Serine C-Palmitoyltransferase/antagonists & inhibitors , Serine C-Palmitoyltransferase/metabolism , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL
...