Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 167: 115416, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37683592

ABSTRACT

Hydrogels are three-dimensional polymer networks with hydrophilic properties. The modifiable properties of hydrogels and the structure resembling living tissue allow their versatile application. Therefore, increasing attention is focused on the use of hydrogels as bioinks for three-dimensional (3D) printing in tissue engineering. Bioprinting involves the fabrication of complex structures from several types of materials, cells, and bioactive compounds. Stem cells (SC), such as mesenchymal stromal cells (MSCs) are frequently employed in 3D constructs. SCs have desirable biological properties such as the ability to differentiate into various types of tissue and high proliferative capacity. Encapsulating SCs in 3D hydrogel constructs enhances their reparative abilities and improves the likelihood of reaching target tissues. In addition, created constructs can simulate the tissue environment and mimic biological signals. Importantly, the immunogenicity of scaffolds is minimized through the use of patient-specific cells and the biocompatibility and biodegradability of the employed biopolymers. Regenerative medicine is taking advantage of the aforementioned capabilities in regenerating various tissues- muscle, bones, nerves, heart, skin, and cartilage.

2.
Sci Rep ; 13(1): 6273, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072464

ABSTRACT

Self-assembling peptides can be used for the regeneration of severely damaged skin. They can act as scaffolds for skin cells and as a reservoir of active compounds, to accelerate scarless wound healing. To overcome repeated administration of peptides which accelerate healing, we report development of three new peptide biomaterials based on the RADA16-I hydrogel functionalized with a sequence (AAPV) cleaved by human neutrophil elastase and short biologically active peptide motifs, namely GHK, KGHK and RDKVYR. The peptide hybrids were investigated for their structural aspects using circular dichroism, thioflavin T assay, transmission electron microscopy, and atomic force microscopy, as well as their rheological properties and stability in different fluids such as water or plasma, and their susceptibility to digestion by enzymes present in the wound environment. In addition, the morphology of the RADA-peptide hydrogels was examined with a unique technique called scanning electron cryomicroscopy. These experiments enabled us to verify if the designed peptides increased the bioactivity of the gel without disturbing its gelling processes. We demonstrate that the physicochemical properties of the designed hybrids were similar to those of the original RADA16-I. The materials behaved as expected, leaving the active motif free when treated with elastase. XTT and LDH tests on fibroblasts and keratinocytes were performed to assess the cytotoxicity of the RADA16-I hybrids, while the viability of cells treated with RADA16-I hybrids was evaluated in a model of human dermal fibroblasts. The hybrid peptides revealed no cytotoxicity; the cells grew and proliferated better than after treatment with RADA16-I alone. Improved wound healing following topical delivery of RADA-GHK and RADA-KGHK was demonstrated using a model of dorsal skin injury in mice and histological analyses. The presented results indicate further research is warranted into the engineered peptides as scaffolds for wound healing and tissue engineering.


Subject(s)
Hydrogels , Protein Sorting Signals , Mice , Humans , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Peptides/pharmacology , Peptides/chemistry , Wound Healing
3.
Biomolecules ; 12(8)2022 08 18.
Article in English | MEDLINE | ID: mdl-36009034

ABSTRACT

The UNited RESidue (UNRES) model of polypeptide chains was applied to study the association of 20 peptides with sizes ranging from 6 to 32 amino-acid residues. Twelve of those were potentially aggregating hexa- or heptapeptides excised from larger proteins, while the remaining eight contained potentially aggregating sequences, functionalized by attaching larger ends rich in charged residues. For 13 peptides, the experimental data of aggregation were used. The remaining seven were synthesized, and their properties were measured in this work. Multiplexed replica-exchange simulations of eight-chain systems were conducted at 12 temperatures from 260 to 370 K at concentrations from 0.421 to 5.78 mM, corresponding to the experimental conditions. The temperature profiles of the fractions of monomers and octamers showed a clear transition corresponding to aggregate dissociation. Low simulated transition temperatures were obtained for the peptides, which did not precipitate after incubation, as well as for the H-GNNQQNY-NH2 prion-protein fragment, which forms small fibrils. A substantial amount of inter-strand ß-sheets was found in most of the systems. The results suggest that UNRES simulations can be used to assess peptide aggregation except for glutamine- and asparagine-rich peptides, for which a revision of the UNRES sidechain-sidechain interaction potentials appears necessary.


Subject(s)
Peptides , Proteins , Molecular Dynamics Simulation , Peptides/chemistry , Protein Conformation , Proteins/chemistry , Temperature
4.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917000

ABSTRACT

Technological developments in the field of biologically active peptide applications in medicine have increased the need for new methods for peptide delivery. The disadvantage of peptides as drugs is their low biological stability. Recently, great attention has been paid to self-assembling peptides that can form fibrils. Such a formulation makes bioactive peptides more resistant to enzymatic degradation and druggable. Peptide fibrils can be carriers for peptides with interesting biological activities. These features open up prospects for using the peptide fibrils as long-acting drugs and are a valid alternative to conventional peptidic therapies. In our study, we designed new peptide scaffolds that are a hybrid of three interconnected amino acid sequences and are: pro-regenerative, cleavable by neutrophilic elastase, and fibril-forming. We intended to obtain peptides that are stable in the wound environment and that, when applied, would release a biologically active sequence. Our studies showed that the designed hybrid peptides show a high tendency toward regular fibril formation and are able to release the pro-regenerative sequence. Cytotoxicity studies showed that all the designed peptides were safe, did not cause cytotoxic effects and revealed a pro-regenerative potential in human fibroblast and keratinocyte cell lines. In vivo experiments in a dorsal skin injury model in mice indicated that two tested peptides moderately promote tissue repair in their free form. Our research proves that peptide fibrils can be a druggable form and a scaffold for active peptides.


Subject(s)
Drug Carriers/chemistry , Peptides/chemistry , Peptides/pharmacology , Tissue Scaffolds/chemistry , Wound Healing/drug effects , Amino Acid Sequence , Animals , Cell Proliferation , Cell Survival/drug effects , Chemical Phenomena , Fibroblasts , Humans , Keratinocytes , Mice , Microscopy, Atomic Force , Microscopy, Electron , Proteolysis , Regenerative Medicine , Spectrum Analysis
5.
Adv Wound Care (New Rochelle) ; 9(12): 657-675, 2020 12.
Article in English | MEDLINE | ID: mdl-33124966

ABSTRACT

Objective: This study evaluated the use of novel peptides derived from platelet-derived growth factor (PDGF-BB) as potential wound healing stimulants. One of the compounds (named PDGF2) was subjected for further research after cytotoxicity and proliferation assays on human skin cells. Further investigation included evaluation of: migration and chemotaxis of skin cells, immunological and allergic safety, the transcriptional analyses of adipose-derived stem cells (ASCs) and dermal fibroblasts stimulated with PDGF2, and the use of dorsal skin wound injury model to evaluate the effect of wound healing in mice. Approach: Colorimetric lactate dehydrogenase and tetrazolium assays were used to evaluate the cytotoxicity and the effect on proliferation. PDGF2 effect on migration and chemotaxis was also checked. Immunological safety and allergic potential were evaluated with a lymphocyte activation and basophil activation test. Transcriptional profiles of ASCs and primary fibroblasts were assessed after stimulation with PDGF2. Eight-week-old BALB/c female mice were used for dorsal skin wound injury model. Results: PDGF2 showed low cytotoxicity, pro-proliferative effects on human skin cells, high immunological safety, and accelerated wound healing in mouse model. Furthermore, transcriptomic analysis of ASCs and fibroblasts revealed the activation of processes involved in wound healing and indicated its safety. Innovation: A novel peptide derived from PDGF-BB was proved to be safe drug candidate in wound healing. We also present a multifaceted in vitro model for the initial screening of new compounds that may be potentially useful in wound healing stimulation. Conclusion: The results show that peptide derived from PDGF-BB is a promising drug candidate for wound treatment.


Subject(s)
Adipose Tissue/cytology , Becaplermin/pharmacology , Fibroblasts/drug effects , Stem Cells/cytology , Wound Healing/drug effects , Adipose Tissue/metabolism , Animals , Chemotaxis/drug effects , Female , Humans , Mice , Mice, Inbred BALB C , Pharmaceutical Preparations , Recombinant Proteins , Skin/cytology , Stem Cells/metabolism
6.
Molecules ; 25(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585846

ABSTRACT

Regeneration and wound healing are vital to tissue homeostasis and organism survival. One of the biggest challenges of today's science and medicine is finding methods and factors to stimulate these processes in the human body. Effective solutions to promote regenerative responses will accelerate advances in tissue engineering, regenerative medicine, transplantology, and a number of other clinical specialties. In this study, we assessed the potential efficacy of a synthetic hexapeptide, RDKVYR, for the stimulation of tissue repair and wound healing. The hexapeptide is marketed under the name "Imunofan" (IM) as an immunostimulant. IM displayed stability in aqueous solutions, while in plasma it was rapidly bound by albumins. Structural analyses demonstrated the conformational flexibility of the peptide. Tests in human fibroblast and keratinocyte cell lines showed that IM exerted a statistically significant (p < 0.05) pro-proliferative activity (30-40% and 20-50% increase in proliferation of fibroblast and keratinocytes, respectively), revealed no cytotoxicity over a vast range of concentrations (p < 0.05), and had no allergic properties. IM was found to induce significant transcriptional responses, such as enhanced activity of genes involved in active DNA demethylation (p < 0.05) in fibroblasts and activation of genes involved in immune responses, migration, and chemotaxis in adipose-derived stem cells derived from surgery donors. Experiments in a model of ear pinna injury in mice indicated that IM moderately promoted tissue repair (8% in BALB/c and 36% in C57BL/6 in comparison to control).


Subject(s)
Cell Proliferation/drug effects , Oligopeptides/pharmacology , Skin/pathology , Wound Healing , Albumins/metabolism , Animals , Basophils/drug effects , Cell Death/drug effects , Cell Line , Chemotaxis/drug effects , Cytokines/metabolism , DNA Methylation/drug effects , Ear/pathology , Fibroblasts/cytology , Fibroblasts/drug effects , HaCaT Cells/cytology , HaCaT Cells/drug effects , Humans , Injections, Subcutaneous , Mice, Inbred BALB C , Mice, Inbred C57BL , Oligopeptides/blood , Oligopeptides/chemistry , Oligopeptides/metabolism , Protein Stability/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Transcription, Genetic/drug effects
7.
Protein Pept Lett ; 26(6): 423-434, 2019 Jul 04.
Article in English | MEDLINE | ID: mdl-30864495

ABSTRACT

BACKGROUND: Antibacterial peptidyl derivative - Cystapep 1, was previously found to be active both against antibiotic-resistant staphylococci and streptococci as well as antibioticsusceptible strains of these species. Therefore, it is a promising lead compound to search for new antimicrobial peptidomimetics. OBJECTIVES: We focused on identifying structural elements that are responsible for the biological activity of Cystapep 1 and its five analogues. We tried to find an answer to the question about the mechanism of action of the tested compounds. Therefore, we have investigated in details the possibility of interacting these compounds with biological membrane mimetics. METHODS: The subject compounds were synthesized in solution, purified and characterized by HPLC and mass spectrometry. Then, the staphylococci susceptibility tests were performed and their cytotoxicity was established. The results of Cystapep 1 and its analogues interactions with model target were examined using the DSC and ITC techniques. At the end the spatial structures of the tested peptidomimetics using NMR technique were obtained. RESULTS: Antimicrobial and cytotoxicity tests show that Cystapep 1 and its peptidomimetic V are good drug candidates. DSC and ITC studies indicate that disruption of membrane is not the only possible mechanism of action of Cystapep 1-like compounds. For Cystapep 1 itself, a multi-step mechanism of interaction with a negatively charged membrane is observed, which indicates other processes occurring alongside the binding process. The conformational analysis indicated the presence of a hydrophobic cluster, composed of certain side chains, only in the structures of active peptidomimetics. This can facilitate the anchoring of the peptidyl derivatives to the bacterial membrane. CONCLUSION: An increase in hydrophobicity of the peptidomimetics improved the antimicrobial activity against S. aureus, however there is no simple correlation between the biological activity and the strength of interactions of the peptidyl with bacterial membrane.


Subject(s)
Anti-Bacterial Agents/chemistry , Cystatin C/chemistry , Cysteine Proteinase Inhibitors/chemistry , Dipeptides/chemistry , Peptidomimetics/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Binding Sites , Cell Line , Cell Survival/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Dipeptides/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Models, Molecular , Peptidomimetics/pharmacology , Protein Conformation , Staphylococcus aureus/drug effects , Structure-Activity Relationship
8.
Exp Dermatol ; 28(10): 1131-1134, 2019 10.
Article in English | MEDLINE | ID: mdl-30240119

ABSTRACT

Epidermolysis bullosa is a group of inherited blistering skin diseases resulting in most cases from missense mutations in KRT5 and KRT14 genes encoding the basal epidermal keratins 5 and 14. Here, we present a patient diagnosed with a localized subtype of epidermolysis bullosa simplex caused by a heterozygous mutation p.Ala428Asp in the KRT5 gene, that has not been previously identified. Moreover, a bioinformatic analysis of the novel mutation was performed, showing changes in the interaction network between the proteins. Identification of novel mutations and genotype-phenotype correlations allow to better understanding of underlying pathophysiologic bases and is important for genetic counselling, patients' management, and disease course prediction.


Subject(s)
Epidermolysis Bullosa Simplex/genetics , Keratin-5/genetics , Amino Acid Sequence , Amino Acid Substitution , Epidermolysis Bullosa Simplex/pathology , Female , Foot Dermatoses/genetics , Genetic Association Studies , Hand Dermatoses/genetics , Heterozygote , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Infant , Keratin-5/chemistry , Molecular Dynamics Simulation , Mutation, Missense , Protein Conformation , Protein Stability , Sequence Alignment , Tongue/pathology
9.
J Pept Sci ; 24(4-5): e3073, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29573035

ABSTRACT

Human cystatin C (hCC) is a low molecular mass protein that belongs to the cystatin superfamily. It is an inhibitor of extracellular cysteine proteinases, present in all human body fluids. At physiological conditions, hCC is a monomer, but it has a tendency to dimerization. Naturally occurring hCC mutant, with leucine in position 68 substituted by glutamine (L68Q), is directly involved in the formation of amyloid deposits, independently of other proteins. This process is the primary cause of hereditary cerebral amyloid angiopathy, observed mainly in the Icelandic population. Oligomerization and fibrillization processes of hCC are not explained equally well, but it is proposed that domain swapping is involved in both of them. Research carried out on the fibrillization process led to new hypothesis about the existence of a steric zipper motif in amyloidogenic proteins. In the hCC sequence, there are 2 fragments which may play the role of a steric zipper: the loop L1 region and the C-terminal fragment. In this work, we focused on the first of these. Nine hexapeptides covering studied hCC fragment were synthesized, and their fibrillogenic potential was assessed using an array of biophysical methods. The obtained results showed that the studied hCC fragment has strong profibrillogenic propensities because it contains 2 fragments fulfilling the requirements for an effective steric zipper located next to each other, forming 1 super-steric zipper motif. This hCC fragment might therefore be responsible for the enhanced amyloidogenic properties of dimeric or partially unfolded hCC.


Subject(s)
Amyloid/chemical synthesis , Cystatin C/chemistry , Oligopeptides/chemical synthesis , Amyloid/chemistry , Cystatin C/genetics , Dimerization , Humans , Models, Molecular , Mutation , Oligopeptides/chemistry , Protein Conformation , Protein Domains
10.
J Appl Genet ; 59(1): 67-72, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29151245

ABSTRACT

Usher syndrome is rare genetic disorder impairing two human senses, hearing and vision, with the characteristic late onset of vision loss. This syndrome is divided into three types. In all cases, the vision loss is postlingual, while loss of hearing is usually prelingual. The vestibular functions may also be disturbed in Usher type 1 and sometimes in type 3. Vestibular areflexia is helpful in making a proper diagnosis of the syndrome, but, often, the syndrome is misdiagnosed as a nonsyndromic hearing loss. Here, we present a Polish family with hearing loss, which was clinically classified as nonsyndromic. After excluding mutations in the DFNB1 locus, we implemented the next-generation sequencing method and revealed that hearing loss was syndromic and mutations in the USH2A gene indicate Usher syndrome. This research highlights the importance of molecular analysis in establishing a clinical diagnosis of congenital hearing loss.


Subject(s)
Deafness/genetics , Usher Syndromes/diagnosis , Usher Syndromes/genetics , Child , Child, Preschool , Connexin 26 , Connexins/genetics , Extracellular Matrix Proteins/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...