Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Biomed Opt Express ; 14(12): 6233-6249, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38420319

ABSTRACT

Research on the spatial distribution of sensitivity of time-domain near infrared diffuse reflectance measurement is reported in this paper. The main objective of the investigation is to validate theoretically calculated sensitivity profiles for a measurement geometry with two detectors and two sources in which sensitivity profiles of statistical moments of distributions of time of flight of photons (DTOFs) are spatially restricted to a region underneath the detectors. For this dual subtraction method, smaller sensitivities to changes appearing in the superficial layer of the medium were observed compared to the single distance and single subtraction methods. Experimental validation of this approach is based on evaluation of changes in the statistical moments of DTOFs measured on a liquid phantom with local absorption perturbations. The spatial distributions of sensitivities, depth-related sensitivity and depth selectivities were obtained from the dual subtraction method and compared with those from single distance and single subtraction approaches. Also, the contrast to noise ratio (CNR) was calculated for the dual subtraction technique and combined with depth selectivity in order to assess the overall performance (product of CNR and depth selectivity) of the method. Spatial sensitivity profiles from phantom experiments are in a good agreement with the results of theoretical studies and feature more locally restricted sensitivity volume with the point of maximal sensitivity located deeper. The highest value of overall performance was obtained experimentally for the second statistical moment in the dual subtraction method (∼10.8) surpassing that of the single distance method (∼8.7). This confirms the advantage of dual subtraction measurement geometries in the suppression of optical signals originated in the superficial layer of the medium.

2.
J Biomed Opt ; 27(7)2022 06.
Article in English | MEDLINE | ID: mdl-35701869

ABSTRACT

SIGNIFICANCE: Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH: The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS: This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5 % over 1 h, and day-to-day reproducibility of <3 % . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS: This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.


Subject(s)
Laboratories , Optics and Photonics , Phantoms, Imaging , Reproducibility of Results , Spectrum Analysis
3.
Biomed Opt Express ; 12(10): 6629-6650, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34745761

ABSTRACT

We present and validate a multi-wavelength time-domain near-infrared spectroscopy (TD-NIRS) system that avoids switching wavelengths and instead exploits the full capability of a supercontinuum light source by emitting and acquiring signals for the whole chosen range of wavelengths. The system was designed for muscle and brain oxygenation monitoring in a clinical environment. A pulsed supercontinuum laser emits broadband light and each of two detection modules acquires the distributions of times of flight of photons (DTOFs) for 16 spectral channels (used width 12.5 nm / channel), providing a total of 32 DTOFs at up to 3 Hz. Two emitting fibers and two detection fiber bundles allow simultaneous measurements at two positions on the tissue or at two source-detector separations. Three established protocols (BIP, MEDPHOT, and nEUROPt) were used to quantitatively assess the system's performance, including linearity, coupling, accuracy, and depth sensitivity. Measurements were performed on 32 homogeneous phantoms and two inhomogeneous phantoms (solid and liquid). Furthermore, measurements on two blood-lipid phantoms with a varied amount of blood and Intralipid provide the strongest validation for accurate tissue oximetry. The retrieved hemoglobin concentrations and oxygen saturation match well with the reference values that were obtained using a commercially available NIRS system (OxiplexTS) and a blood gas analyzer (ABL90 FLEX), except a discrepancy occurs for the lowest amount of Intralipid. In-vivo measurements on the forearm of three healthy volunteers during arterial (250 mmHg) and venous (60 mmHg) cuff occlusions provide an example of tissue monitoring during the expected hemodynamic changes that follow previously well-described physiologies. All results, including quantitative parameters, can be compared to other systems that report similar tests. Overall, the presented TD-NIRS system has an exemplary performance evaluated with state-of-the-art performance assessment methods.

4.
Biomed Opt Express ; 12(9): 5351-5367, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34692187

ABSTRACT

Time-domain diffuse correlation spectroscopy (TD-DCS) is an emerging optical technique that enables noninvasive measurement of microvascular blood flow with photon path-length resolution. In TD-DCS, a picosecond pulsed laser with a long coherence length, adequate illumination power, and narrow instrument response function (IRF) is required, and satisfying all these features is challenging. To this purpose, in this study we characterized the performance of three different laser sources for TD-DCS. First, the sources were evaluated based on their emission spectrum and IRF. Then, we compared the signal-to-noise ratio and the sensitivity to velocity changes of scattering particles in a series of phantom measurements. We also compared the results for in vivo measurements, performing an arterial occlusion protocol on the forearm of three adult subjects. Overall, each laser has the potential to be successfully used both for laboratory and clinical applications. However, we found that the effects caused by the IRF are more significant than the effect of a limited temporal coherence.

5.
Sci Rep ; 11(1): 1817, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33469124

ABSTRACT

Monitoring of human tissue hemodynamics is invaluable in clinics as the proper blood flow regulates cellular-level metabolism. Time-domain diffuse correlation spectroscopy (TD-DCS) enables noninvasive blood flow measurements by analyzing temporal intensity fluctuations of the scattered light. With time-of-flight (TOF) resolution, TD-DCS should decompose the blood flow at different sample depths. For example, in the human head, it allows us to distinguish blood flows in the scalp, skull, or cortex. However, the tissues are typically polydisperse. So photons with a similar TOF can be scattered from structures that move at different speeds. Here, we introduce a novel approach that takes this problem into account and allows us to quantify the TOF-resolved blood flow of human tissue accurately. We apply this approach to monitor the blood flow index in the human forearm in vivo during the cuff occlusion challenge. We detect depth-dependent reactive hyperemia. Finally, we applied a controllable pressure to the human forehead in vivo to demonstrate that our approach can separate superficial from the deep blood flow. Our results can be beneficial for neuroimaging sensing applications that require short interoptode separation.


Subject(s)
Regional Blood Flow , Spectrum Analysis/methods , Forehead/blood supply , Humans , Phantoms, Imaging
6.
Quant Imaging Med Surg ; 10(11): 2085-2097, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33139989

ABSTRACT

BACKGROUND: The care given to moderate and severe traumatic brain injury (TBI) patients may be hampered by the inability to tailor their treatments according to their neurological status. Contrast-enhanced near-infrared spectroscopy (NIRS) with indocyanine green (ICG) could be a suitable neuromonitoring tool. METHODS: Monitoring the effective attenuation coefficients (EAC), we compared the ICG kinetics between five TBI and five extracranial trauma patients, following a venous-injection of 5 mL of 1 mg/mL ICG, using two commercially available NIRS devices. RESULTS: A significantly slower passage of the dye through the brain of the TBI group was observed in two parameters related to the first ICG inflow into the brain (P=0.04; P=0.01). This is likely related to the reduction of cerebral perfusion following TBI. Significant changes in ICG optical properties minutes after injection (P=0.04) were registered. The acquisition of valid optical data in a clinical environment was challenging. CONCLUSIONS: Future research should analyze abnormalities in the ICG kinetic following brain trauma, test how these values can enhance care in TBI, and adapt the current optical devices to clinical settings. Also, studies on the pattern in changes of ICG optical properties after venous injection can improve the accuracy of the values detected.

7.
J Cereb Blood Flow Metab ; 40(8): 1586-1598, 2020 08.
Article in English | MEDLINE | ID: mdl-32345103

ABSTRACT

Contrast-enhanced near-infrared spectroscopy (NIRS) with indocyanine green (ICG) can be a valid non-invasive, continuous, bedside neuromonitoring tool. However, its usage in moderate and severe traumatic brain injury (TBI) patients can be unprecise due to their clinical status. This review is targeted at researchers and clinicians involved in the development and application of contrast-enhanced NIRS for the care of TBI patients and can be used to design future studies. This review describes the methods developed to monitor the brain perfusion and the blood-brain barrier integrity using the changes of diffuse reflectance during the ICG passage and the results on studies in animals and humans. The limitations in accuracy of these methods when applied on TBI patients and the proposed solutions to overcome them are discussed. Finally, the analysis of relative parameters is proposed as a valid alternative over absolute values to address some current clinical needs in brain trauma care. In conclusion, care should be taken in the translation of the optical signal into absolute physiological parameters of TBI patients, as their clinical status must be taken into consideration. Discussion on where and how future studies should be directed to effectively incorporate contrast-enhanced NIRS into brain trauma care is given.


Subject(s)
Brain Injuries, Traumatic/diagnosis , Brain/blood supply , Cerebrovascular Circulation/physiology , Contrast Media/pharmacokinetics , Indocyanine Green/pharmacokinetics , Spectroscopy, Near-Infrared/methods , Animals , Blood-Brain Barrier/physiopathology , Brain Injuries, Traumatic/physiopathology , Humans , Perfusion
8.
Biomed Opt Express ; 11(2): 1043-1060, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32133236

ABSTRACT

A methodology for the assessment of the cerebral hemodynamic reaction to normotensive hypovolemia, reduction in cerebral perfusion and orthostatic stress leading to ischemic hypoxia and reduced muscular tension is presented. Most frequently, the pilots of highly maneuverable aircraft are exposed to these phenomena. Studies were carried out using the system consisting of a chamber that generates low pressure around the lower part of the body - LBNP (lower body negative pressure) placed on the tilt table. An in-house developed 6-channel NIRS system operating at 735 and 850 nm was used in order to assess the oxygenation of the cerebral cortex, based on measurements of diffusely reflected light in reflectance geometry. The measurements were carried out on a group of 12 active pilots and cadets of the Polish Air Force Academy and 12 healthy volunteers. The dynamics of changes in cerebral oxygenation was evaluated as a response to LBNP stimuli with a simultaneous rapid change of the tilt table angle. Parameters based on calculated changes of total hemoglobin concentration were proposed allowing to evaluate differences in reactions observed in control subjects and pilots/cadets. The results of orthogonal partial least squares-discriminant analysis based on these parameters show that the subjects can be classified into their groups with 100% accuracy.

9.
Biomed Opt Express ; 10(12): 6296-6312, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31853401

ABSTRACT

Visual stimulation is one of the most commonly used paradigms for cerebral cortex function investigation. Experiments typically involve presenting to a volunteer a black-and-white checkerboard with contrast-reversing at a frequency of 4 to 16 Hz. The aim of the present study was to investigate the influence of the flickering frequency on the amplitude of changes in the concentration of oxygenated and deoxygenated hemoglobin. The hemoglobin concentrations were assessed with the use of a high resolution diffuse optical tomography method. Spatial distributions of changes in hemoglobin concentrations overlaying the visual cortex are shown for various stimuli frequencies. Moreover, the hemoglobin concentration changes obtained for different source-detector separations (from 1.5 to 5.4 cm) are presented. Our results demonstrate that the flickering frequency had a statistically significant effect on the induced oxyhemoglobin changes (p < 0,001). The amplitude of oxy hemoglobin concentration changes at a frequency of 8 Hz was higher in comparison with that measured at 4 Hz :[median(25th-75thpercentiles) 1.24 (0.94-1.71) vs. 0.92(0.73-1.28)µM, p < 0.001]; 12 Hz:[1.24 (0.94-1.71) vs. 1.04 (0.78-1.32) µM, p < 0.001]; and 16 Hz:[1.24 (0.94-1.71) vs. 1.15(0.87-1.48) µM, p < 0.001]. No significant differences were observed between the size of an area of activation for various frequencies. The demonstrated superiority of 8 Hz over other frequencies can advance understanding of visual stimulations and help guide future fNIRS protocols.

10.
Biomed Opt Express ; 10(9): 4621-4635, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31565513

ABSTRACT

Time-resolved near-infrared spectroscopy (TR-NIRS) measurements can be used to recover changes in concentrations of tissue constituents ( Δ C ) by applying the moments method and the Beer-Lambert law. In this work we carried out the error propagation analysis allowing to calculate the standard deviations of uncertainty in estimation of the Δ C . Here, we show the process of choosing wavelengths for the evaluation of hemodynamic (oxy-, deoxyhemoglobin) and metabolic (cytochrome-c-oxidase (CCO)) responses within the brain tissue as measured with an in-house developed TR-NIRS multi-wavelength system, which measures at 16 consecutive wavelengths separated by 12.5 nm and placed between 650 and 950 nm. Data generated with Monte Carlo simulations on three-layered model (scalp, skull, brain) for wavelengths range from 650 to 950 nm were used to carry out the error propagation analysis for varying choices of wavelengths. For a detector with a spectrally uniform responsivity, the minimal standard deviation of the estimated changes in CCO within the brain layer, σ Δ C CCO brain = 0.40 µM, was observed for the 16 consecutive wavelengths from 725 to 912.5 nm. For realistic a detector model, i.e. the spectral responsivity characteristic is considered, the minimum, σ Δ C CCO brain = 0.47 µM, was observed at the 16 consecutive wavelengths from 688 to 875 nm. We introduce the method of applying the error propagation analysis to data as measured with spectral TR-NIRS systems to calculate uncertainty of recovery of tissue constituents concentrations.

11.
Biomed Opt Express ; 10(10): 5031-5041, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31646028

ABSTRACT

We have studied the spatial distributions of the sensitivity of time-resolved near-infrared diffuse reflectance measurement. Sensitivity factors representing a change of parameters of a measured optical signal induced by absorption perturbation in a certain voxel of the medium were simulated using the diffusion equation solution. The parameters were statistical moments of measured distributions of time of flight of photons (DTOFs) i.e., the total number of photons, mean time of flight and variance. The distributions of the sensitivity of statistical moments of DTOFs to a change in absorption were generated for various source-detector separations and various optical properties of the medium. Furthermore, differential sensitivity distributions for two different source-detector separations were calculated. A measurement geometry, in which two detection spots, separated by 5 mm, in combination with two sources was proposed. For this setup differences between the signals obtained for both detectors were calculated independently for both sources and afterward summed up for both source positions. Obtained differences in moments of DTOFs assessed at two source-detector separations and summed up for different positioning of the sources allowed to shape up the sensitivity profiles. Calculated sensitivity profiles show that positive sensitivities of the mean time of flight of photons and variance of the DTOF can be obtained. These positive sensitivity areas are located just between both detection spots and cover the compartment located deeply in the medium. The sensitivity in superficial compartments of the medium is negative and much smaller in amplitude. The proposed technique can be used for improved discrimination of optical signals related to the intracerebral change in absorption which remains a serious obstacle in the application of the NIRS technique in the assessment of brain oxygenation or perfusion.

12.
Biomed Opt Express ; 10(7): 3434-3446, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31467788

ABSTRACT

An intra-abdominal pressure (IAP) is correlated with cerebral perfusion, in a mechanism of reducing venous outflow. The elevated intra-abdominal pressure leads to an increase in the intracranial pressure and a decrease in the cerebral perfusion pressure. We studied the relationship between the IAP and the cerebral oxygenation with the use of the near infrared spectroscopy technique during a gynecological surgery. The changes in hemoglobin concentrations were analyzed in the time-frequency domain in the frequency band related to respiration. The measurements were carried out in 15 subjects who underwent laparoscopic surgery. During the laparoscopy, the intra-abdominal cavity was insufflated with CO2, which caused a controlled increase in the IAP. It was observed that the amplitudes of respiration-related waves present in hemoglobin concentration signals show an increase of 1.5 to 8.5 times during elevation of the IAP by 15 mmHg.

13.
J Vis ; 19(4): 17, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30977772

ABSTRACT

Amblyopia is a neurodevelopmental vision disorder that is associated with abnormal visual stimulation during early childhood. Although our knowledge regarding spatial vision deficits in amblyopic subjects is well established, the neural control of eye movements in amblyopia is yet to be explored. In the present study we have evaluated the gap effect, and for the first time (to our best knowledge), express saccades generation in amblyopic (strabismic as well as anisometropic) and age-matched control subjects. We have compared the saccadic latency under different gap conditions ("no gap," 50 ms gap, and 200 ms gap), between the amblyopic and control groups. Our results have shown that saccadic latency was reduced during the gap paradigms both for amblyopic and control groups for all viewing conditions. Furthermore, the size of the gap effect was comparable for all groups and viewing conditions (both for short and long gap durations). In addition, consistent with previous results, the amblyopic eye has manifested an increased saccadic latency as compared to the nondominant eye in the control group. Regarding the occurrence of express saccades, the 200 ms gap condition was associated with an increased number of express saccades as compared to 50 ms gap and "no gap" conditions, both for amblyopic and control subjects. We did not observe any significant difference in terms of express saccades production between the control and amblyopic subjects. Our findings may suggest that amblyopia does not alter physiological mechanisms related to the efficiency of visual attention/fixation disengagement as supported by the observation that the gap effect and express saccades production was comparable between the normal and amblyopic subjects.


Subject(s)
Amblyopia/physiopathology , Saccades/physiology , Adult , Female , Fixation, Ocular/physiology , Humans , Male , Middle Aged , Reaction Time/physiology , Time Factors , Visual Acuity/physiology
14.
Biomed Opt Express ; 10(2): 761-771, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30800513

ABSTRACT

In this paper, we propose the application of time-domain near-infrared spectroscopy to the assessment of oscillations in cerebral hemodynamics. These oscillations were observed in the statistical moments of the distributions of time of flight of photons (DTOFs) measured on the head. We analyzed the zeroth and second centralized moments of DTOFs (total number of photons and variance) to obtain their spectra to provide parameters for the frequency components of microcirculation, which differ between the extracerebral and intracerebral layers of the head. Analysis of these moments revealed statistically significant differences between a control group of healthy subjects and a group of patients with severe neurovascular disorders, which is a promising result for the assessment of cerebral microcirculation and cerebral autoregulation mechanisms.

15.
Sci Rep ; 8(1): 7332, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29743483

ABSTRACT

We aimed to determine whether optical methods based on bolus tracking of an optical contrast agent are useful for the confirmation of cerebral circulation cessation in patients being evaluated for brain death. Different stages of cerebral perfusion disturbance were compared in three groups of subjects: controls, patients with posttraumatic cerebral edema, and patients with brain death. We used a time-resolved near-infrared spectroscopy setup and indocyanine green (ICG) as an intravascular flow tracer. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was carried out to build statistical models allowing for group separation. Thirty of 37 subjects (81.1%) were classified correctly (8 of 9 control subjects, 88.9%; 13 of 15 patients with edema, 86.7%; and 9 of 13 patients with brain death, 69.2%; p < 0.0001). Depending on the combination of variables used in the OPLS-DA model, sensitivity, specificity, and accuracy were 66.7-92.9%, 81.8-92.9%, and 77.3-89.3%, respectively. The method was feasible and promising in the demanding intensive care unit environment. However, its accuracy did not reach the level required for brain death confirmation. The potential usefulness of the method may be improved by increasing the depth of light penetration, confirming its accuracy against other methods evaluating cerebral flow cessation, and developing absolute parameters for cerebral perfusion.


Subject(s)
Brain Death/diagnostic imaging , Brain Death/diagnosis , Adult , Aged , Aged, 80 and over , Brain , Brain Edema/diagnostic imaging , Cerebrovascular Circulation/physiology , Contrast Media/pharmacology , Discriminant Analysis , Feasibility Studies , Female , Humans , Indocyanine Green , Least-Squares Analysis , Male , Middle Aged , Models, Statistical , Perfusion , Reproducibility of Results , Sensitivity and Specificity , Spectroscopy, Near-Infrared/methods
16.
J Cereb Blood Flow Metab ; 36(11): 1825-1843, 2016 11.
Article in English | MEDLINE | ID: mdl-27604312

ABSTRACT

We present an overview of the wide range of potential applications of optical methods for monitoring traumatic brain injury. The MEDLINE database was electronically searched with the following search terms: "traumatic brain injury," "head injury," or "head trauma," and "optical methods," "NIRS," "near-infrared spectroscopy," "cerebral oxygenation," or "cerebral oximetry." Original reports concerning human subjects published from January 1980 to June 2015 in English were analyzed. Fifty-four studies met our inclusion criteria. Optical methods have been tested for detection of intracranial lesions, monitoring brain oxygenation, assessment of brain perfusion, and evaluation of cerebral autoregulation or intracellular metabolic processes in the brain. Some studies have also examined the applicability of optical methods during the recovery phase of traumatic brain injury . The limitations of currently available optical methods and promising directions of future development are described in this review. Considering the outstanding technical challenges, the limited number of patients studied, and the mixed results and opinions gathered from other reviews on this subject, we believe that optical methods must remain primarily research tools for the present. More studies are needed to gain confidence in the use of these techniques for neuromonitoring of traumatic brain injury patients.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Cerebrovascular Circulation/physiology , Intracranial Hemorrhage, Traumatic/diagnostic imaging , Neuroimaging/methods , Optical Imaging/methods , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Humans , Intracranial Hemorrhage, Traumatic/metabolism , Intracranial Hemorrhage, Traumatic/pathology , Oximetry/methods , Oxygen Consumption/physiology , Spectroscopy, Near-Infrared/methods
17.
J Biomed Opt ; 20(10): 106013, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26509415

ABSTRACT

The aim of the study was to determine optimal measurement conditions for assessment of brain perfusion with the use of optical contrast agent and time-resolved diffuse reflectometry in the near-infrared wavelength range. The source-detector separation at which the distribution of time of flights (DTOF) of photons provided useful information on the inflow of the contrast agent to the intracerebral brain tissue compartments was determined. Series of Monte Carlo simulations was performed in which the inflow and washout of the dye in extra- and intracerebral tissue compartments was modeled and the DTOFs were obtained at different source-detector separations. Furthermore, tests on diffuse phantoms were carried out using a time-resolved setup allowing the measurement of DTOFs at 16 source-detector separations. Finally, the setup was applied in experiments carried out on the heads of adult volunteers during intravenous injection of indocyanine green. Analysis of statistical moments of the measured DTOFs showed that the source-detector separation of 6 cm is recommended for monitoring of inflow of optical contrast to the intracerebral brain tissue compartments with the use of continuous wave reflectometry, whereas the separation of 4 cm is enough when the higher-order moments of DTOFs are available.


Subject(s)
Contrast Media/pharmacokinetics , Image Enhancement/methods , Perfusion Imaging/methods , Spectroscopy, Near-Infrared/methods , Adult , Blood Flow Velocity , Brain , Cerebrovascular Circulation , Equipment Design , Equipment Failure Analysis , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
18.
Biomed Opt Express ; 6(7): 2609-23, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26203385

ABSTRACT

The in-vivo optical properties of the human head are investigated in the 600-1100 nm range on different subjects using continuous wave and time domain diffuse optical spectroscopy. The work was performed in collaboration with different research groups and the different techniques were applied to the same subject. Data analysis was carried out using homogeneous and layered models and final results were also confirmed by Monte Carlo simulations. The depth sensitivity of each technique was investigated and related to the probed region of the cerebral tissue. This work, based on different validated instruments, is a contribution to fill the existing gap between the present knowledge and the actual in-vivo values of the head optical properties.

19.
J Biomed Opt ; 19(8): 086010, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25121479

ABSTRACT

Performance assessment of instruments devised for clinical applications is of key importance for validation and quality assurance. Two new protocols were developed and applied to facilitate the design and optimization of instruments for time-domain optical brain imaging within the European project nEUROPt. Here, we present the "Basic Instrumental Performance" protocol for direct measurement of relevant characteristics. Two tests are discussed in detail. First, the responsivity of the detection system is a measure of the overall efficiency to detect light emerging from tissue. For the related test, dedicated solid slab phantoms were developed and quantitatively spectrally characterized to provide sources of known radiance with nearly Lambertian angular characteristics. The responsivity of four time-domain optical brain imagers was found to be of the order of 0.1 m² sr. The relevance of the responsivity measure is demonstrated by simulations of diffuse reflectance as a function of source-detector separation and optical properties. Second, the temporal instrument response function (IRF) is a critically important factor in determining the performance of time-domain systems. Measurements of the IRF for various instruments were combined with simulations to illustrate the impact of the width and shape of the IRF on contrast for a deep absorption change mimicking brain activation.


Subject(s)
Algorithms , Brain/cytology , Equipment Failure Analysis/methods , Image Interpretation, Computer-Assisted/methods , Microscopy/instrumentation , Tomography, Optical/instrumentation , Animals , Equipment Design , Europe , Mice , Reproducibility of Results , Sensitivity and Specificity
20.
J Biomed Opt ; 19(8): 086012, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25121480

ABSTRACT

The nEUROPt protocol is one of two new protocols developed within the European project nEUROPt to characterize the performances of time-domain systems for optical imaging of the brain. It was applied in joint measurement campaigns to compare the various instruments and to assess the impact of technical improvements. This protocol addresses the characteristic of optical brain imaging to detect, localize, and quantify absorption changes in the brain. It was implemented with two types of inhomogeneous liquid phantoms based on Intralipid and India ink with well-defined optical properties. First, small black inclusions were used to mimic localized changes of the absorption coefficient. The position of the inclusions was varied in depth and lateral direction to investigate contrast and spatial resolution. Second, two-layered liquid phantoms with variable absorption coefficients were employed to study the quantification of layer-wide changes and, in particular, to determine depth selectivity, i.e., the ratio of sensitivities for deep and superficial absorption changes. We introduce the tests of the nEUROPt protocol and present examples of results obtained with different instruments and methods of data analysis. This protocol could be a useful step toward performance tests for future standards in diffuse optical imaging.


Subject(s)
Algorithms , Brain/cytology , Equipment Failure Analysis/methods , Image Interpretation, Computer-Assisted/methods , Microscopy/instrumentation , Tomography, Optical/instrumentation , Equipment Design , Europe , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...