Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroimaging ; 29(4): 440-446, 2019 07.
Article in English | MEDLINE | ID: mdl-31056818

ABSTRACT

BACKGROUND AND PURPOSE: The brain's stiffness measurements from magnetic resonance elastography (MRE) strongly depend on actuation frequencies, which makes cross-study comparisons challenging. We performed a preliminary study to acquire optimal sets of actuation frequencies to accurately obtain rheological parameters for the whole brain (WB), white matter (WM), and gray matter (GM). METHODS: Six healthy volunteers aged between 26 and 72 years old went through MRE with a modified single-shot spin-echo echo planar imaging pulse sequence embedded with motion encoding gradients on a 3T scanner. Frequency-independent brain material properties and best-fit material model were determined from the frequency-dependent brain tissue response data (20 -80 Hz), by comparing four different linear viscoelastic material models (Maxwell, Kelvin-Voigt, Springpot, and Zener). During the material fitting, spatial averaging of complex shear moduli (G*) obtained under single actuation frequency was performed, and then rheological parameters were acquired. Since clinical scan time is limited, a combination of three actuation frequencies that would provide the most accurate approximation and lowest fitting error was determined for WB, WM, and GM by optimizing for the lowest Bayesian information criterion (BIC). RESULTS: BIC scores for the Zener and Springpot models showed these models approximate the multifrequency response of the tissue best. The best-fit frequency combinations for the reference Zener and Springpot models were identified to be 30-60-70 and 30-40-80 Hz, respectively, for the WB. CONCLUSIONS: Optimal sets of actuation frequencies to accurately obtain rheological parameters for WB, WM, and GM were determined from shear moduli measurements obtained via 3-dimensional direct inversion. We believe that our study is a first-step in developing a region-specific multifrequency MRE protocol for the human brain.


Subject(s)
Brain/diagnostic imaging , Elasticity Imaging Techniques/methods , Magnetic Resonance Imaging/methods , Adult , Aged , Echo-Planar Imaging , Female , Gray Matter/diagnostic imaging , Healthy Volunteers , Humans , Male , Middle Aged , White Matter/diagnostic imaging
2.
J Magn Reson Imaging ; 41(4): 899-902, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25051959

ABSTRACT

This article is intended to provide guidelines for the minimum level of safety and operational knowledge that an MR system operator should exhibit in order to safely perform an MR procedure in a human subject in a research setting. This article represents the position of the International Society for Magnetic Resonance in Medicine (ISMRM) regarding this important topic and was developed by members of this society's MR Safety Committee.


Subject(s)
Health Personnel/standards , Human Experimentation/standards , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Imaging/standards , Patient Safety/standards , Practice Guidelines as Topic , Biomedical Research/standards , Health Personnel/education , Humans , Internationality , Safety Management/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...