Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol Neurosurg Psychiatry ; 89(10): 1071-1081, 2018 10.
Article in English | MEDLINE | ID: mdl-29735511

ABSTRACT

BACKGROUND AND OBJECTIVE: Dysferlinopathies are a group of muscle disorders caused by mutations in the DYSF gene. Previous muscle imaging studies describe a selective pattern of muscle involvement in smaller patient cohorts, but a large imaging study across the entire spectrum of the dysferlinopathies had not been performed and previous imaging findings were not correlated with functional tests. METHODS: We present cross-sectional T1-weighted muscle MRI data from 182 patients with genetically confirmed dysferlinopathies. We have analysed the pattern of muscles involved in the disease using hierarchical analysis and presented it as heatmaps. Results of the MRI scans have been correlated with relevant functional tests for each region of the body analysed. RESULTS: In 181 of the 182 patients scanned, we observed muscle pathology on T1-weighted images, with the gastrocnemius medialis and the soleus being the most commonly affected muscles. A similar pattern of involvement was identified in most patients regardless of their clinical presentation. Increased muscle pathology on MRI correlated positively with disease duration and functional impairment. CONCLUSIONS: The information generated by this study is of high diagnostic value and important for clinical trial development. We have been able to describe a pattern that can be considered as characteristic of dysferlinopathy. We have defined the natural history of the disease from a radiological point of view. These results enabled the identification of the most relevant regions of interest for quantitative MRI in longitudinal studies, such as clinical trials. CLINICAL TRIAL REGISTRATION: NCT01676077.


Subject(s)
Muscle, Skeletal/diagnostic imaging , Muscular Dystrophies, Limb-Girdle/diagnostic imaging , Adult , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged
2.
Pain ; 154(6): 776-81, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23618495

ABSTRACT

Functional magnetic resonance imaging (fMRI) is a technique that uses blood oxygen-level-dependent (BOLD) signals to elucidate discrete areas of neuronal activity. Despite the significant number of fMRI human brain studies, few researchers have applied fMRI technology to investigating neuronal activity within the human spinal cord. Our study goals were to demonstrate that fMRI could reveal the following: (i) appropriate somatotopic activations in response to noxious stimuli in the deep and superficial dorsal horn of the human cervical spinal cord, and (ii) lateralization of fMRI activations in response to noxious stimulation in the right and left upper extremity. We subjected healthy participants to noxious stimulation during fMRI scans. Using a spiral in-out image sequence and retrospective correction for physiologic noise, we demonstrated that fMRI can create high-resolution, neuronal activation maps of the human cervical spinal cord. During nociceptive stimulation of all 4 sites (left deltoid, right deltoid, left thenar eminence and right thenar eminence), we found ipsilateral dorsal horn activation. Stimulation of the deltoid activated C5, whereas stimulation of the thenar eminence activated C6. Our study contributes to creating an objective analysis of pain transmission; other investigators can use these results to further study central nervous system changes that occur in patients with acute and chronic pain.


Subject(s)
Neurons/physiology , Nociception/physiology , Pain/physiopathology , Spinal Cord/physiopathology , Adolescent , Adult , Female , Functional Neuroimaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...