Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
Add more filters










Publication year range
1.
J Pept Sci ; 12(3): 233-8, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16161022

ABSTRACT

The binding, conformation and orientation of a hydrophilic vector peptide penetratin in lipid membranes and its state of self-association in solution were examined using circular dichroism (CD), analytical ultracentrifugation and fluorescence spectroscopy. In aqueous solution, penetratin exhibited a low helicity and sedimented as a monomer in the concentration range approximately 50-500 microM. The partitioning of penetratin into phospholipid vesicles was determined using tryptophan fluorescence anisotropy titrations. The apparent penetratin affinity for 20% phosphatidylserine/80% egg phosphatidylcholine vesicles was inversely related to the total peptide concentration implying repulsive peptide-peptide interactions on the lipid surface. The circular dichroism spectra of the peptide when bound to unaligned 20% phosphatidylserine/80% egg phosphatidylcholine vesicles and aligned hydrated phospholipid multilayers were attributed to the presence of both alpha-helical and beta-turn structures. The orientation of the secondary structural elements was determined using oriented circular dichroism spectroscopy. From the known circular dichroism tensor components of the alpha-helix, it can be concluded that the orientation of the helical structures is predominantly perpendicular to the membrane surface, while that of the beta-type carbonyls is parallel to the membrane surface. On the basis of our observations, we propose a novel model for penetratin translocation.


Subject(s)
Carrier Proteins/chemistry , Membranes, Artificial , Phospholipids/chemistry , Cell-Penetrating Peptides , Protein Conformation
2.
Eur Biophys J ; 33(2): 98-108, 2004 Apr.
Article in English | MEDLINE | ID: mdl-12879312

ABSTRACT

The membrane-binding properties of a class A amphipathic peptide (18D) were investigated using two different immobilized model membrane systems. The first system involved the use of surface plasmon resonance (SPR) to study the binding of 18D to dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylglycerol (DMPG), which allowed peptide binding to be monitored in real time. The SPR experiments indicated stronger binding of 18D to DMPG than DMPC, which kinetic analysis revealed was due to a faster on-rate. The second model membrane system involved immobilized membrane chromatography in which the binding of 18D to either DMPC or DMPG monolayers covalently linked to silica particles was analysed by elution chromatography. Stronger binding affinity of 18D was also obtained with the negatively charged phosphatidylglycerol (PG) monolayer compared to the phosphatidylcholine (PC) monolayer, which was consistent with the SPR results. Non-linear binding behaviour of 18D to the immobilized lipid monolayers was also observed, which suggests that the peptide undergoes conformational and orientational changes upon binding to the immobilized PC and PG ligands. Significant band broadening was also observed on both monolayers, with larger bandwidths obtained on the PC surface, indicating slower binding and orientation kinetics with the zwitterionic surface. The dependence of logk' on the percentage of methanol also demonstrated a bimodal interaction whereby hydrophobic forces predominated at higher temperatures and methanol concentrations, while at lower temperatures, electrostatic and other polar forces also made a contribution to the affinity of the peptides for the lipid monolayer particularly. Overall, these results demonstrate the complementary use of these two lipid biosensors which allows the role of hydrophobic and electrostatic forces in peptide-membrane interactions to be studied and insight gained into the kinetic factors associated with these interactions.


Subject(s)
Biosensing Techniques/methods , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Liposomes/chemistry , Membrane Proteins/chemistry , Peptides/chemistry , Phosphatidylglycerols/chemistry , Binding Sites , Chromatography/methods , Membrane Fluidity , Membranes, Artificial , Protein Binding , Surface Plasmon Resonance/methods , Temperature
3.
Biochemistry ; 40(36): 10741-6, 2001 Sep 11.
Article in English | MEDLINE | ID: mdl-11535048

ABSTRACT

Uptake of dietary iron is essential for replenishment of body stores. A role for the hormone gastrin in iron uptake as a chelator of ferric ions in the gastric lumen has been proposed previously [Baldwin, G. S. (1992) Med. Hypotheses 38, 70-74]. Here, spectroscopic evidence of selective, high-affinity binding of ferric ions to progastrin-derived peptides in aqueous solution at low pH is provided. The maximum at 281 nm in the absorption spectrum of glycine-extended gastrin(17) at pH 4.0 increased (2.07 +/- 0.30)-fold in the presence of > or =2 equiv of ferric ions. Titration of glycine-extended gastrin(17) with ferric ions under stoichiometric conditions indicated that the stoichiometry of binding was 2.00 +/- 0.28 mol of Fe(3+)/mol of peptide. Fluorescence quenching experiments yielded values for the stoichiometry and apparent dissociation constant of the ferric ion-glycine-extended gastrin(17) complex at pH 4.0 of 2.39 +/- 0.17 mol of Fe(3+)/mol and 0.62 +/- 0.19 microM, respectively. No interaction was detected with Co(2+), Cu(2+), Mn(2+), or Cr(3+). Electron paramagnetic resonance spectroscopy suggested that the iron ligands were either oxygen or sulfur atoms. Fluorescence quenching experiments with peptides derived from the glycine-extended gastrin(17) sequence indicated that one or more of the five glutamic acid residues were necessary for iron binding. The binding of ferric ions by glycine-extended gastrin(17) at low pH is consistent with a role for progastrin-derived peptides in iron uptake from the lumen of the gastrointestinal tract.


Subject(s)
Ferric Compounds/chemistry , Gastrins/chemistry , Gastrins/metabolism , Binding Sites , Electron Spin Resonance Spectroscopy , Ferric Compounds/metabolism , Gastric Mucosa/metabolism , Glutamic Acid , Humans , Hydrogen-Ion Concentration , Kinetics , Ligands , Models, Biological , Protein Conformation , Spectrometry, Fluorescence
4.
Biochemistry ; 40(28): 8283-91, 2001 Jul 27.
Article in English | MEDLINE | ID: mdl-11444974

ABSTRACT

Inter- and intradomain flexibility of the myosin head was measured using phosphorescence anisotropy of selectively labeled parts of the molecule. Whole myosin and the myosin head, subfragment-1 (S1), were labeled with eosin-5-iodoacetamide on the catalytic domain (Cys 707) and on two sites on the regulatory domain (Cys 177 on the essential light chain and Cys 154 on the regulatory light chain). Phosphorescence anisotropy was measured in soluble S1 and myosin, with and without F-actin, as well as in synthetic myosin filaments. The anisotropy of the former were too low to observe differences in the domain mobilities, including when bound to actin. However, this was not the case in the myosin filament. The final anisotropy of the probe on the catalytic domain was 0.051, which increased for probes bound to the essential and regulatory light chains to 0.085 and 0.089, respectively. These differences can be expressed in terms of a "wobble in a cone" model, suggesting various amplitudes. The catalytic domain was least restricted, with a 51 +/- 5 degrees half-cone angle, whereas the essential and regulatory light chain amplitude was less than 29 degrees. These data demonstrate the presence of a point of flexibility between the catalytic and regulatory domains. The presence of the "hinge" between the catalytic and regulatory domains, with a rigid regulatory domain, is consistent with both the "swinging lever arm" and "Brownian ratchet" models of force generation. However, in the former case there is a postulated requirement for the hinge to stiffen to transmit the generated torque associated by nucleotide hydrolysis and actin binding.


Subject(s)
Catalytic Domain/physiology , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/physiology , Myosin Subfragments/chemistry , Myosin Subfragments/physiology , Animals , Fluorescence Polarization/methods , Luminescent Measurements , Muscle, Skeletal/chemistry , Muscle, Skeletal/physiology , Myosin Light Chains/chemistry , Myosin Light Chains/physiology , Protein Structure, Tertiary , Rabbits , Spectrometry, Fluorescence , Structure-Activity Relationship
5.
Eur J Biochem ; 268(6): 1659-69, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11248685

ABSTRACT

To aid the development of custom peptide antibiotics, a kinetic study of membrane lysis by cecropin B (CB) and its analogs, cecropin B1 (CB1) and cecropin B3 (CB3) was carried out to determine the mechanism by which these peptides disrupt the bilayer structure of liposomes of defined composition. Disruption of the phospholipid bilayer was determined by a fluorescence assay involving the use of dithionite to quench the fluorescence of lipids labeled with N-7-nitro-2,1,3-benzoxadiazol-4-yl. Lytic peptides caused the disruption of liposomes to occur in two kinetic steps. For liposomes composed of mixtures of phosphatidylcholine and phosphatidic acid, the time constants for each kinetic step were shorter for CB and CB1 than for CB3. Oriented circular dichroism experiments showed that the peptides could exist in at least two different membrane-associated states that differed primarily in the orientation of the helical segments with respect to the bilayer surface. The results are discussed in terms of kinetic mechanisms of membrane lysis. The mode of actions of these peptides used for the interpretation of their kinetic mechanisms were supported by surface plasmon resonance experiments including or excluding the pore-forming activities.


Subject(s)
Insect Proteins/metabolism , Amino Acid Sequence , Cell Membrane/metabolism , Circular Dichroism , Insect Proteins/chemistry , Kinetics , Liposomes , Molecular Sequence Data , Spectrometry, Fluorescence
6.
Curr Protoc Protein Sci ; Appendix 5: Appendix 5A, 2001 May.
Article in English | MEDLINE | ID: mdl-18429087

ABSTRACT

Living organisms grow, differentiate, reproduce, and respond to their environment via specific and integrated interactions between biomolecules. The investigation of molecular interactions therefore constitutes a major area of biochemical study, occupying a ubiquitous and central position between molecular physiology on the one hand and structural chemistry on the other. While specificity resides in the details of structural recognition, the dynamic interplay between biomolecules is orchestrated precisely by the thermodynamics of the biomolecular equilibria involved. A common set of physicochemical principles applies to all such phenomena, irrespective of whether the interaction of interest involves an enzyme and its substrate or inhibitor, a hormone or growth factor and its receptor, an antibody and its antigen, or, indeed, the binding of effector molecules that modulate these interactions. The binding affinity, binding specificity, number of binding sites per molecule, as well as the enthalpic and entropic contributions to the binding energy are common parameters that assist an understanding of the biochemical outcome. This unit aims to provide an overview of the design and interpretation of binding experiments.


Subject(s)
Biological Assay/methods , Models, Biological , Animals , Binding, Competitive , Fluorescence Polarization , Ligands
7.
Biochim Biophys Acta ; 1467(1): 124-30, 2000 Jul 31.
Article in English | MEDLINE | ID: mdl-10930515

ABSTRACT

The effect of lipid phase state on the orientation and conformation of a class A alpha-helical peptide on aligned lipid multilayers was examined using oriented circular dichroism spectroscopy. A comparison of oriented spectra in aligned peptide-lipid multilayers with CD spectra of unaligned peptide lipid vesicle complexes is consistent with a preferential alignment of helices parallel to the membrane surface at temperatures above and below the main acyl-chain melting transition temperature of the phospholipid. Changes are observed in the oriented CD spectra with lipid phase state which are attributed to a subtle conformational change of the peptide on the lipid surface. The results are compared with available experimental data on membrane-active lytic and antimicrobial helical peptides.


Subject(s)
Membranes, Artificial , Peptides/chemistry , Phospholipids/chemistry , Amino Acid Sequence , Circular Dichroism , Dimyristoylphosphatidylcholine/chemistry , Molecular Sequence Data , Protein Structure, Secondary , Temperature
8.
Biophys J ; 79(2): 1066-73, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10920036

ABSTRACT

The amphipathic helix plays a key role in many membrane-associating peptides and proteins. The dynamics of helices on membrane surfaces might be of importance to their function. The fluorescence anisotropy decay of tryptophan is a sensitive indicator of local, segmental, and global dynamics within a peptide or protein. We describe the use of frequency domain dynamic depolarization measurements to determine the site-specific tryptophan dynamics of single tryptophan amphipathic peptides bound to a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide that is known to associate at the interface of phospholipid bilayers. The peptides contain a single tryptophan located at positions 2, 3, 7, 12, or 14 in the sequence. Association of the peptides with egg phosphatidylcholine vesicles results in complex behavior of both the tryptophan intensity decay and the anisotropy decay. The anisotropy decays were biphasic and were fitted to an associated model where each lifetime component in the intensity decay is associated with a particular rotational correlation time from the anisotropy decay. In contrast, an unassociated model where all components of the intensity decay share common rotational modes was unable to provide an adequate fit to the data. Two correlation times were resolved from the associated analysis: one whose contribution to the anisotropy decay was dependent on the exposure of the tryptophan to the aqueous phase, and the other whose contribution reflected the position of the tryptophan in the sequence. The results are compared with existing x-ray structural data and molecular dynamics simulations of membrane-incorporated peptides.


Subject(s)
Lipid Bilayers/chemistry , Peptides/chemistry , Protein Structure, Secondary , Tryptophan , Amino Acid Sequence , Fluorescence Polarization , Models, Molecular , Molecular Sequence Data , Phosphatidylcholines/chemistry , Proteins/chemistry , Structure-Activity Relationship , X-Ray Diffraction
9.
Biochemistry ; 39(28): 8276-83, 2000 Jul 18.
Article in English | MEDLINE | ID: mdl-10889036

ABSTRACT

Human apolipoprotein C-II (apoC-II) self-associates in solution to form aggregates with the characteristics of amyloid including red-green birefringence in the presence of Congo Red under cross-polarized light, increased fluorescence in the presence of thioflavin T, and a fibrous structure when examined by electron microscopy. ApoC-II was expressed and purified from Escherichia coli and rapidly exchanged from 5 M guanidine hydrochloride into 100 mM sodium phosphate, pH 7.4, to a final concentration of 0.3 mg/mL. This apoC-II was initially soluble, eluting as low molecular weight species in gel filtration experiments using Sephadex G-50. Circular dichroism (CD) spectroscopy indicated predominantly unordered structure. Upon incubation for 24 h, apoC-II self-associated into high molecular weight aggregates as indicated by elution in the void volume of a Sephadex G-50 column, by rapid sedimentation in an analytical ultracentrifuge, and by increased light scattering. CD spectroscopy indicated an increase in beta-sheet content, while fluorescence emission spectroscopy of the single tryptophan revealed a blue shift and an increase in maximum intensity, suggesting repositioning of the tryptophan into a less polar environment. Electron microscopy of apoC-II aggregates revealed a novel looped-ribbon morphology (width 12 nm) and several isolated closed loops. Like all of the conserved plasma apolipoproteins, apoC-II contains amphipathic helical regions that account for the increase in alpha-helix content on lipid binding. The increase in beta-structure accompanying apoC-II fibril formation points to an alternative folding pathway and an in vitro system to explore the general tendency of apolipoproteins to form amyloid in vivo.


Subject(s)
Amyloid/metabolism , Apolipoproteins C/chemistry , Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Apolipoprotein C-II , Apolipoproteins C/ultrastructure , Benzothiazoles , Chromatography, Gel , Circular Dichroism , Congo Red/metabolism , Humans , Microscopy, Electron , Protein Conformation , Spectrometry, Fluorescence , Thiazoles/metabolism , Tryptophan/chemistry , Ultracentrifugation
10.
Biochemistry ; 39(19): 5653-61, 2000 May 16.
Article in English | MEDLINE | ID: mdl-10801315

ABSTRACT

The Escherichia coli regulatory protein TyrR controls the expression of eight transcription units that encode proteins involved in the biosynthesis and transport of aromatic amino acids. It binds to DNA as a homodimer with a subunit molecular mass of 57 640 Da, each of which has a single site for the binding of ATP within a central structural domain. This paper reports distances between four sites on the DNA and the ATP binding site as determined by fluorescence resonance energy transfer. The DNA was a 30mer containing a centrally located binding site for TyrR. Replacement of a thymidine residue with an aminouridine residue at positions -9, -7, -3, and 2 of the palindromic oligonucleotide sequence enabled the placement of a single fluorescein group along the major groove of the DNA. The energy transfer acceptor was ATP labeled with a rhodamine group through positions 2' and 3' of the ribose, positions that are known to cause minimal interference with the binding of ATP to protein. The dissociation constant for the binding of rhodamine-ATP to TyrR was 300 nM as determined by steady-state fluorescence anisotropy titrations. The energy transfer efficiencies were determined by measuring the level of quenching of donor fluorescence on binding rhodamine-ATP to the TyrR-DNA complex. The experimental transfer efficiencies were compared to theoretical values calculated for a model of the DNA-TyrR complex in which the position of the ATP binding site was allowed to vary over the surface of the monomer unit. Theory was written to account for the transfer from one donor to two acceptors, one on each monomer unit of the TyrR dimer. The results indicate that the ATP binding site is about 40-45 A from the nearest point on the DNA and distant from the DNA helix-turn-helix binding domain. The effects of ATP binding of (i) increasing the TyrR binding affinity by a factor of 4-5 and (ii) permitting the binding of the tyrosine corepressor must therefore occur because of a significant allosteric change in the conformation of the protein.


Subject(s)
Adenosine Triphosphate/chemistry , DNA, Bacterial/chemistry , Escherichia coli Proteins , Repressor Proteins/chemistry , Adenosine Triphosphate/metabolism , Binding Sites , DNA, Bacterial/metabolism , Energy Transfer , Escherichia coli/chemistry , Fluorescence Polarization , Macromolecular Substances , Models, Molecular , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Repressor Proteins/metabolism , Rhodamines/chemistry , Rhodamines/metabolism , Spectrometry, Fluorescence
11.
J Biol Chem ; 275(26): 19707-12, 2000 Jun 30.
Article in English | MEDLINE | ID: mdl-10781581

ABSTRACT

We aimed to distinguish between the effects of mutations in apoA-I on the requirements for the secondary structure and a specific amino acid sequence for lecithin:cholesterol acyltransferase (LCAT) activation. Several mutants were constructed targeting region 140-150: (i) two mutations affecting alpha-helical structure, deletion of amino acids 140-150 and substitution of Ala(143) for proline; (ii) two mutations not affecting alpha-helical structure, substitution of Val(149) for arginine and substitution of amino acids 63-73 for sequence 140-150; and (iii) a mutation in a similar region away from the target area, deletion of amino acids 63-73. All mutations affecting region 140-150 resulted in a 4-42-fold reduction in LCAT activation. Three mutations, apoA-I(Delta140-150), apoA-I(P143A), and apoA-I(140-150 --> 63-73), affected both the apparent V(max) and K(m), whereas the mutation apoA-I(R149V) affected only the V(max). The mutation apoA-I(Delta63-73) caused only a 5-fold increase in the K(m). All mutants, except apoA-I(P143A) and apoA-I(Delta63-73), were active in phospholipid binding assay. All mutants, except apoA-I(P143A), formed normal discoidal complexes with phospholipid. The mutation apoA-I(Delta63-73) caused a significant reduction in the stability of apoA-I.phospholipid complexes in denaturation experiments. Combined, our results strongly suggest that although the correct conformation and orientation of apoA-I in the complex with lipids are crucial for activation of LCAT, when these conditions are fulfilled, activation also strongly depends on the sequence that includes amino acids 140-150.


Subject(s)
Apolipoprotein A-I/chemistry , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Amino Acid Sequence , Amino Acids/chemistry , Apolipoprotein A-I/metabolism , Cross-Linking Reagents/metabolism , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Guanidine/metabolism , Humans , Kinetics , Lipid Metabolism , Lipoproteins, HDL/metabolism , Mutagenesis, Site-Directed , Protein Conformation , Protein Structure, Secondary , Recombinant Proteins/metabolism , Time Factors
12.
Biochemistry ; 39(12): 3433-40, 2000 Mar 28.
Article in English | MEDLINE | ID: mdl-10727238

ABSTRACT

Apolipoprotein C-II (apoC-II) is an exchangeable plasma apolipoprotein and an endogenous activator of lipoprotein lipase (LpL). Genetic deficiencies of apoC-II and overexpression of apoC-II in transgenic mice are both associated with severe hyperlipidemia, indicating a complex role for apoC-II in the regulation of blood lipid levels. ApoC-II exerts no effect on the activity of LpL for soluble substrates, suggesting that activation occurs via the formation of a lipid-bound complex. We have synthesized a peptide corresponding to amino acid residues 39-62 of mature human apoC-II. This peptide does not bind to model lipid surfaces but retains the ability to activate LpL. Conjugation of the fluorophore 7-nitrobenz-2-oxa-1,3-diazole (NBD) to the N-terminal alpha-amino group of apoC-II39-62 facilitated determination of the affinity of the peptide for LpL using fluorescence anisotropy measurements. The dissociation constant describing this interaction was 0.23 microM, and was unchanged when LpL was lipid-bound. Competitive binding studies showed that apoC-II39-62 and full-length apoC-II exhibited the same affinity for LpL in aqueous solution, whereas the affinity for full-length apoC-II was increased at least 1 order of magnitude in the presence of lipid. We suggest that while the binding of apoC-II to the lipid surface promotes the formation of a high-affinity complex of apoC-II and LpL, activation occurs via direct helix-helix interactions between apoC-II39-62 and the loop covering the active site of LpL.


Subject(s)
Apolipoproteins C/metabolism , Lipids/chemistry , Lipoprotein Lipase/metabolism , Peptide Fragments/metabolism , Amino Acid Sequence , Animals , Apolipoprotein C-II , Apolipoproteins C/chemistry , Apolipoproteins C/genetics , Binding, Competitive , Cattle , Circular Dichroism , Dimyristoylphosphatidylcholine/metabolism , Enzyme Activation , Humans , Lipase/metabolism , Lipid Bilayers/metabolism , Lipid Metabolism , Lipoprotein Lipase/chemistry , Molecular Sequence Data , Peptide Fragments/chemical synthesis , Peptide Fragments/genetics , Phospholipases/metabolism , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solutions
13.
Anal Biochem ; 275(1): 22-9, 1999 Nov 01.
Article in English | MEDLINE | ID: mdl-10542105

ABSTRACT

The binding of an amphipathic alpha-helical peptide to small unilamellar lipid vesicles has been examined using chemical derivitization and mass spectrometry. The peptide is derived from the sequence of human apolipoprotein C-II (apoC-II), the protein activator of lipoprotein lipase (LpL). ApoC-II(19-39) forms approximately 60% alpha-helix upon binding to model egg yolk phosphatidylcholine small unilamellar vesicles. Measurement of the affinity of the peptide for lipid by spectrophotometric methods is complicated by the contribution of scattered light to optical signals. Instead, we characterize the binding event using the differential labeling of lysine residues by the lipid- and aqueous-phase cross-linkers, disuccinimidyl suberate (DSS) and bis(sulfosuccinimidyl) suberate (BS(3)), respectively. In aqueous solution, the three lysine residues of the peptide are accessible to both cross-linkers. In the presence of lipid, the C-terminal lysine residue becomes inaccessible to the lipid-phase cross-linker DSS, but remains accessible to the aqueous-phase cross-linker, BS(3). We use mass spectrometry to characterize this binding event and to derive a dissociation constant for the interaction (K(d) = 5 microM). We also provide evidence for the formation of dimeric cross-linked peptide when high densities of peptide are bound to the lipid surface.


Subject(s)
Apolipoproteins C/metabolism , Lipid Metabolism , Mass Spectrometry/methods , Peptides/metabolism , Amino Acid Sequence , Apolipoprotein C-II , Apolipoproteins C/chemistry , Circular Dichroism , Humans , Lipids/chemistry , Molecular Sequence Data , Peptide Fragments/metabolism , Peptides/chemistry , Protein Binding
14.
Biochemistry ; 38(33): 10878-84, 1999 Aug 17.
Article in English | MEDLINE | ID: mdl-10451384

ABSTRACT

The interaction of a peptide derived from the sequence of apolipoprotein C-II (apoC-II) with a model lipid surface has been investigated by fluorescence spectroscopy. ApoC-II19-39, labeled at the N-terminus with 7-nitrobenz-2-oxa-1,3-diazole (NBD), bound to small unilamellar vesicles of phosphatidylcholine with a dissociation constant of 6 microM. The lipid-bound NBD-labeled peptide exhibited a red-edge excitation shift in its emission maximum and anisotropy, consistent with insertion of the probe into the motionally restricted, polar environment provided by the bilayer interface. The small Stokes shift of the NBD fluorophore permits electronic energy homotransfer between peptides on the lipid surface and results in depolarization of the NBD emission. At high surface densities of lipid-bound peptide, the anisotropy of the NBD probe was 33% lower than in corresponding samples in which electronic energy homotransfer was prevented by the addition of an unlabeled peptide. The efficiency of energy transfer between probes was not consistent with a random distribution of peptides on the lipid surface, indicating instead the self-association of lipid-bound apoC-II19-39. We propose that the role of this sequence in apoC-II is not only to mediate binding of protein to a lipid surface, but also to stabilize the lipoprotein complexes by associating with other amphipathic helices within apoC-II and with other apolipoproteins.


Subject(s)
Apolipoproteins C/chemistry , Lipid Bilayers/chemistry , 4-Chloro-7-nitrobenzofurazan/chemistry , Amino Acid Sequence , Apolipoprotein C-II , Apolipoproteins C/metabolism , Binding Sites , Egg Yolk , Energy Transfer , Fluorescence Polarization , Indicators and Reagents , Lipid Bilayers/metabolism , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Phosphatidylcholines/chemistry , Protein Structure, Secondary , Spectrometry, Fluorescence
15.
Biophys J ; 76(6): 3235-42, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10354448

ABSTRACT

The fluorescence decay of tryptophan is a sensitive indicator of its local environment within a peptide or protein. We describe the use of frequency domain fluorescence spectroscopy to determine the conformational and environmental changes associated with the interaction of single tryptophan amphipathic peptides with a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide known to associate with lipid bilayers. The peptides contain a single tryptophan located at positions 2, 3, 7, 12, or 14 in the sequence. In aqueous solution, the peptides are unstructured and a triple-exponential function is required to fit the decay data. Association of the peptides with small unilamellar vesicles composed of egg phosphatidylcholine reduces the complexity of the fluorescence decays to a double exponential function, with a reduced dependence of the preexponential amplitude on peptide sequence. The data are interpreted in terms of a rotamer model in which the modality and relative proportions of the lifetime components are related to the population distribution of tryptophan chi1 rotamers about the Calpha-Cbeta bond. Peptide secondary structure and the disposition of the tryptophan residue relative to the lipid and aqueous phases in the peptide-lipid complex affect the local environment of tryptophan and influence the distribution of side-chain rotamers. The results show that measurement of the temporal decay of tryptophan emission provides a useful adjunct to other biophysical techniques for investigating peptide-lipid and protein-membrane interactions.


Subject(s)
Lipid Bilayers/chemistry , Peptides/chemistry , Tryptophan/chemistry , Amino Acid Sequence , Biophysical Phenomena , Biophysics , Molecular Sequence Data , Phospholipids/chemistry , Spectrometry, Fluorescence , Surface Properties , Water
16.
J Pept Sci ; 5(3): 141-53, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10323558

ABSTRACT

We report the solid-phase synthesis and some pharmacological properties of 23 new analogs of arginine vasopressin (AVP) which have the Phe3 residue replaced by a broad variety of amino acids. Peptides 1-9 have at position 3: (1) the mixed aromatic/aliphatic amino acid thienylalanine (Thi) and the aliphatic amino acids; (2) cyclohexylalanine (Cha); (3) norleucine (Nle); (4) Leu; (5) norvaline (Nva); (6) Val; (7) alpha-aminobutyric acid (Abu); (8) Ala; (9) Gly. Peptides 10-23 have at position 3: the aromatic amino acids, (10) homophenylalanine (Hphe): (11) Tyr; (12) Trp; (13) 2-naphthylalanine (2-Nal); the conformationally-restricted amino acids (14) Pro; (15) 2-aminotetraline-2-carboxylic acid (Atc); the polar amino acids (16) Ser; (17) Thr; (18) Gln; and the charged amino acids (19) Asp; (20) Glu; (21) Arg; (22) Lys; (23) Orn. All 23 new peptides were evaluated for agonistic and, where appropriate, antagonistic activities in in vivo antidiuretic (V2-receptor) and vasopressor (V1a-receptor) assays and in in vitro (no Mg2+) oxytocic assays. The corresponding potencies (units/mg) in these assays for AVP are: 323+/-16; 369+/-6 and 13.9+/-0.5. Peptides 1-9 exhibit the following potencies (units/mg) in these three assays: (1) 379+/-14; 360+/-9; 36.2+/-1.9; (2) 294+/-21: 73.4+/-2.7; 0.33+/-0.02; (3) 249+/-28; 84.6+/-4.3; 4.72+/-0.16; (4) 229+19; 21.4+/-0.6; 2.1+/-0.2; (5) 134+/-5; 31.2+/-0.9; 28.4+/-0.2; (6) 114+/-9; 45.3+2.3; 11.3+/-1.6; (7) 86.7+/-2.5; 4.29+/-0.13; 0.45+/-0.03; (8) 15.5+/-1.5; 0.16+/-0.01; approximately 0.02: (9) 3.76+/-0.03; < 0.02; in vitro oxytocic agonism was not detected. These data show that the aliphatic amino acids Cha, Nle, Leu, Nva and Val are well-tolerated at position 3 in AVP with retention of surprisingly high levels of antidiuretic activity. Peptides 2-9 exhibit significant gains in both antidiuretic/vasopressor (A/P) and antidiuretic/oxytocic (A/O) selectivities relative to AVP. [Thi3]AVP appears to be a more potent antidiuretic and oxytocic agonist than AVP and is equipotent with AVP as a vasopressor agonist. The antidiuretic potencies of peptides 10-23 exhibit drastic losses relative to AVP. They range from a low of 0.018+/-0.001 units/mg for the Lys3 analog (peptide 22) to a high of 24.6+/-4.6 units,mg for the Hphe3 analog (peptide 10). Their vasopressor potencies are also drastically reduced. These range from a low of < 0.002 units/mg for peptide 22 to a high of 8.99+0.44 units/mg for the Atc3 analog (peptide 15). Peptides 10-23 exhibit negligible or undetectable in vitro oxytocic agonism. The findings on peptides 10-23 show that position 3 in AVP is highly intolerant of changes with aromatic, conformationally-restricted, polar and charged amino acids. Furthermore, these findings are in striking contrast to our recent discovery that position 3 in the potent V2/V1a/OT antagonist d(CH2)5D-Tyr(Et)2VAVP tolerates a broad latitude of structural change at position 3 with many of the same amino acids, to give excellent retention of antagonistic potencies. The data on peptides 1-4 offer promising clues to the design of more potent and selective AVP V2 agonists.


Subject(s)
Arginine Vasopressin/chemistry , Arginine Vasopressin/pharmacology , Vasoconstrictor Agents/chemistry , Vasoconstrictor Agents/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Amino Acid Sequence , Amino Acid Substitution , Amino Acids/chemistry , Animals , Arginine Vasopressin/analogs & derivatives , Diuresis/drug effects , Oxytocin/agonists , Oxytocin/antagonists & inhibitors , Protein Conformation , Rats , Structure-Activity Relationship
17.
Eur Biophys J ; 28(2): 133-41, 1999.
Article in English | MEDLINE | ID: mdl-10028238

ABSTRACT

The amphipathic alpha-helix is a recognised structural motif that is shared by membrane-associating proteins and peptides of diverse function. The aim of this paper is to determine the orientation of an alpha-helical amphipathic peptide on the bilayer surface. We use five amphipathic 18-residue peptide analogues of a class A amphipathic peptide that is known to associate with a bilayer surface. Tyrosine and tryptophan are used as spectroscopic probes to sense local environments in the peptide in solution and when bound to the surface of unilamellar phosphatidylcholine vesicles. In a series of peptides, tryptophan is moved progressively along the sequence from the nonpolar face (positions 3, 7, 4) to the polar face of the peptide (positions 2, 12). The local environment of the tryptophan residue at each position is determined using fluorescence spectroscopy employing quantum yield, and the wavelength of the emission maximum as indicators of micropolarity. The exposure of the tryptophan residues at each site is assessed by acrylamide quenching. On association with vesicles, the tryptophan residues at positions 3, 7 and 14 are in nonpolar water-shielded environments, and the tryptophan at position 12 is in an exposed polar environment. The tryptophan at position 2, which is located near the bilayer-water interface, exhibits intermediate behaviour. Analysis of the second-derivative absorption spectrum confirmed that the tyrosine residue at position 7 is in a nonpolar water-shielded environment in the peptide-lipid complex. We conclude that these class A amphipathic peptides lie parallel to the lipid surface and penetrate no deeper than the ester linkages of the phospholipids.


Subject(s)
Lipid Bilayers/chemistry , Peptides/chemistry , Phospholipids/chemistry , Amino Acid Sequence , Cyclic N-Oxides/chemistry , Diffusion , Molecular Sequence Data , Peptides/chemical synthesis , Protein Structure, Secondary , Spectrometry, Fluorescence , Spin Labels , Structure-Activity Relationship , Thermodynamics , Tryptophan/chemistry , Tyrosine/chemistry
18.
Biochim Biophys Acta ; 1425(1): 74-80, 1998 Sep 16.
Article in English | MEDLINE | ID: mdl-9813247

ABSTRACT

The synthetic peptide pilosulin 1, corresponding to the largest defined allergenic polypeptide found in the venom of the jumper ant Myrmecia pilosula, inhibited the incorporation of [methyl-3H]thymidine into proliferating Epstein-Barr transformed (EBV) B-cells. The LD50 was four-fold lower in concentration than melittin, a cytotoxic peptide found in honey bee venom. Loss of cell viability was assessed by flow cytometry by measuring the proportion of cells that fluoresced in the presence of the fluorescent dye 7-aminoactinomycin D. Examination of proliferating EBV B-cells indicated that the cells lost viability within a few minutes exposure to pilosulin 1. Partial peptides of pilosulin 1 were less efficient in causing loss of cell viability and the results suggest that the 22 N-terminal residues are critical to the cytotoxic activity of pilosulin 1. Normal blood white cells were also labile to pilosulin 1. T- and B-lymphocytes, monocytes and natural killer cells, however, were more labile than granulocytes. Analysis of pilosulin 1 using circular dichroism indicated that, in common with melittin and other Hymenoptera venom toxins, it had the potential to adopt an alpha-helical secondary structure.


Subject(s)
Allergens/toxicity , Ant Venoms/toxicity , Allergens/chemistry , Allergens/genetics , Amino Acid Sequence , Animals , Ant Venoms/chemistry , Ant Venoms/genetics , Ants , B-Lymphocytes/drug effects , Cell Division/drug effects , Cell Survival/drug effects , Cells, Cultured , Circular Dichroism , Hemolysis/drug effects , Humans , In Vitro Techniques , Leukocytes/drug effects , Leukocytes, Mononuclear/drug effects , Molecular Sequence Data , Protein Structure, Secondary
19.
Photochem Photobiol ; 67(5): 500-10, 1998 May.
Article in English | MEDLINE | ID: mdl-9613235

ABSTRACT

Although fluorescein is a widely used fluorescent probe in the biosciences, the effect of solvent environment on its spectral properties is poorly understood. In this paper we explore the use of fluorescein as a probe of the state of hydrogen bonding in its local environment. This application is based on the observation, originally made by Martin (Chem. Phys. Lett. 35, 105-111, 1975), that the absorption maximum of fluorescein undergoes substantial shifts in organic solvents related to the hydrogen bonding power of the solvents. We have extended this work by studying the spectral properties of the dianion form of the probe in solvent-water mixtures. We show that the magnitude of the shift correlates with the alpha and beta parameters of Kamlet and Taft (J. Am. Chem. Soc. 98, 377-383; 2886-2894, 1976), which provide a scale of the hydrogen bond donor acidities and acceptor basicities, respectively, of the solvents. In solvent-water mixtures, these shifts reflect general effects of the solvents on the hydrogen bonding environment of the fluorescein through water-solvent hydrogen bonding and specific effects due to fluorescein-solvent hydrogen bonding. Indeed, both the absorption and fluorescence properties appear to be dominated by these effects indicating that the spectral shifts of the dianion can be used as an indicator of its hydrogen bonding environment. We discuss the application of fluorescein as a probe of hydrogen bonding in the microenvironment immediately surrounding the fluorophore, and we illustrate the effect with reference to the fluorescein-antifluorescein antibody complex where it appears that antibodies selected during the immune response possess binding sites that are increasingly dehydrated and hydrophobic.


Subject(s)
Fluorescein/chemistry , Antibodies/chemistry , Hydrogen Bonding , Molecular Probes , Solvents , Spectrum Analysis , Water
20.
Biochemistry ; 37(20): 7431-43, 1998 May 19.
Article in English | MEDLINE | ID: mdl-9585557

ABSTRACT

Fluorescence quenching was used to study the site-specific binding of the Escherichia coli regulatory protein TyrR to a fluoresceinated oligonucleotide (9F30A/30B) containing a TyrR binding site. The equilibrium constant for the interaction (KL) was measured as a function of temperature and salt concentration in the presence and absence of ATPgammaS, a specific ligand for TyrR. Fluorescence titrations yielded a KL value of 1.20 x 10(7) M-1 at 20 degrees C, which was independent of the acceptor (9F30A/30B) concentration in the range 5-500 nM, indicating that the system exhibits true equilibrium binding. Clarke and Glew analysis of the temperature dependence of binding revealed a linear dependence of R ln KL on temperature in the absence of ATPgammaS. The thermodynamic parameters obtained at 20 degrees C (theta) were = -35.73 kJ mol-1, = 57.41 kJ mol-1, and = 93.14 kJ mol-1. Saturating levels of ATPgammaS (200 microM) strengthened binding at all temperatures and resulted in a nonlinear dependence of Rln KL on temperature. The thermodynamic parameters characterizing binding under these conditions were = -39.32 kJ mol-1, = 37.16 kJ mol-1, = 76.40 kJ mol-1, and = -1.03 kJ mol-1 K-1. Several conclusions were drawn from these data. First, binding is entropically driven at 20 degrees C in both the presence and absence of ATPgammaS. This can partly be accounted for by counterions released from the DNA upon TyrR binding; in the absence of ATPgammaS and divalent cations, the TyrR-9F30A/30B interaction results in the release of two to three potassium ions. Second, the more favorable value, and hence tighter binding observed in the presence of ATPgammaS, is primarily due to a decrease in (-20.3 kJ mol-1), which overcomes an unfavorable decrease in (-16.7 kJ mol-1). Third, the negative value obtained in the presence of ATPgammaS indicates that the binding of ATPgammaS favors a conformational change in TyrR upon binding to 9F30A/30B, yielding a more stable complex.


Subject(s)
DNA, Bacterial/metabolism , Escherichia coli Proteins , Escherichia coli/metabolism , Repressor Proteins/metabolism , Thermodynamics , Cations, Monovalent , Circular Dichroism , DNA, Bacterial/chemistry , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/genetics , Fluorescein-5-isothiocyanate/metabolism , Oligonucleotides/metabolism , Protein Binding/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , Spectrometry, Fluorescence , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...