Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 7(9): 1030-1045, 2017 09.
Article in English | MEDLINE | ID: mdl-28526733

ABSTRACT

Despite an improving therapeutic landscape, significant challenges remain in treating the majority of patients with advanced ovarian or renal cancer. We identified the cell-cell adhesion molecule cadherin-6 (CDH6) as a lineage gene having significant differential expression in ovarian and kidney cancers. HKT288 is an optimized CDH6-targeting DM4-based antibody-drug conjugate (ADC) developed for the treatment of these diseases. Our study provides mechanistic evidence supporting the importance of linker choice for optimal antitumor activity and highlights CDH6 as an antigen for biotherapeutic development. To more robustly predict patient benefit of targeting CDH6, we incorporate a population-based patient-derived xenograft (PDX) clinical trial (PCT) to capture the heterogeneity of response across an unselected cohort of 30 models-a novel preclinical approach in ADC development. HKT288 induces durable tumor regressions of ovarian and renal cancer models in vivo, including 40% of models on the PCT, and features a preclinical safety profile supportive of progression toward clinical evaluation.Significance: We identify CDH6 as a target for biotherapeutics development and demonstrate how an integrated pharmacology strategy that incorporates mechanistic pharmacodynamics and toxicology studies provides a rich dataset for optimizing the therapeutic format. We highlight how a population-based PDX clinical trial and retrospective biomarker analysis can provide correlates of activity and response to guide initial patient selection for first-in-human trials of HKT288. Cancer Discov; 7(9); 1030-45. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 920.


Subject(s)
Antineoplastic Agents/therapeutic use , Cadherins/antagonists & inhibitors , Kidney Neoplasms/drug therapy , Ovarian Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cadherins/genetics , Cadherins/metabolism , Female , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Macaca fascicularis , Mice, Nude , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Rats , Xenograft Model Antitumor Assays
2.
MAbs ; 8(3): 513-23, 2016.
Article in English | MEDLINE | ID: mdl-26752675

ABSTRACT

Antibody-drug conjugates (ADCs) are of great interest as targeted cancer therapeutics. Preparation of ADCs for early stage screening is constrained by purification and biochemical analysis techniques that necessitate burdensome quantities of antibody. Here we describe a method, developed for the maytansinoid class of ADCs, enabling parallel conjugation of antibodies in 96-well format. The method utilizes ∼ 100 µg of antibody per well and requires <5 µg of ADC for characterization. We demonstrate the capabilities of this system using model antibodies. We also provide multiple examples applying this method to early-stage screening of maytansinoid ADCs. The method can greatly increase the throughput with which candidate ADCs can be screened in cell-based assays, and may be more generally applicable to high-throughput preparation and screening of different types of protein conjugates.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neoplasm/pharmacology , Immunoconjugates/pharmacology , Maytansine/pharmacology , Neoplasms/drug therapy , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neoplasm/immunology , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Humans , Immunoconjugates/immunology , Neoplasms/immunology
3.
Cancer Res ; 73(19): 6024-35, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23928993

ABSTRACT

HER2/HER3 dimerization resulting from overexpression of HER2 or neuregulin (NRG1) in cancer leads to HER3-mediated oncogenic activation of phosphoinositide 3-kinase (PI3K) signaling. Although ligand-blocking HER3 antibodies inhibit NRG1-driven tumor growth, they are ineffective against HER2-driven tumor growth because HER2 activates HER3 in a ligand-independent manner. In this study, we describe a novel HER3 monoclonal antibody (LJM716) that can neutralize multiple modes of HER3 activation, making it a superior candidate for clinical translation as a therapeutic candidate. LJM716 was a potent inhibitor of HER3/AKT phosphorylation and proliferation in HER2-amplified and NRG1-expressing cancer cells, and it displayed single-agent efficacy in tumor xenograft models. Combining LJM716 with agents that target HER2 or EGFR produced synergistic antitumor activity in vitro and in vivo. In particular, combining LJM716 with trastuzumab produced a more potent inhibition of signaling and cell proliferation than trastuzumab/pertuzumab combinations with similar activity in vivo. To elucidate its mechanism of action, we solved the structure of LJM716 bound to HER3, finding that LJM716 bound to an epitope, within domains 2 and 4, that traps HER3 in an inactive conformation. Taken together, our findings establish that LJM716 possesses a novel mechanism of action that, in combination with HER2- or EGFR-targeted agents, may leverage their clinical efficacy in ErbB-driven cancers.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Breast Neoplasms/pathology , Neuregulin-1/metabolism , Protein Conformation/drug effects , Receptor, ErbB-3/antagonists & inhibitors , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cell Proliferation/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Humans , Immunoblotting , Immunoprecipitation , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Phosphorylation/drug effects , Protein Multimerization/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/chemistry , Receptor, ErbB-3/immunology , Receptor, ErbB-3/metabolism , Signal Transduction , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Prostate ; 72(7): 769-76, 2012 May 15.
Article in English | MEDLINE | ID: mdl-21956655

ABSTRACT

BACKGROUND: Prostate-specific antigen (PSA) is a pivotal downstream target gene of the androgen receptor (AR), and a serum biomarker to monitor prostate cancer (PrCa) progression. It has been reported that PSA transactivates AR, but the mechanistic requirements of this response have not been investigated. METHODS: We studied the localization of PSA, AR, and Src in intracellular compartments of synthetic androgen (R1881)-stimulated LNCaP and C4-2B PrCa cells, using immunofluorescence and subcellular fractionation approaches. We also investigated the effect of downregulation of PSA on AR expression by immunoblotting and real-time PCR using short hairpin RNA (shRNA) and small interfering RNA (siRNA). Src activity was analyzed by immunoblotting. RESULTS: R1881 stimulation induced nuclear localization of both PSA and AR in LNCaP and C4-2B PrCa cells as well as increased phosphorylation of Src. Stable shRNA or transient siRNA knockdown of PSA resulted in reduced AR protein levels as well as AR mRNA levels in C4-2B cells. Similar to C4-2B cells, ablation of AR levels upon silencing of PSA was also confirmed in VCaP cells, another androgen-independent cell line. Silencing of PSA did not cause significant changes in Src activation; besides, Src regulation by integrins did not appear to affect AR transcriptional activity. CONCLUSIONS: PSA localizes to nuclei of androgen-stimulated PrCa cells, and controls AR mRNA and protein levels. This regulatory loop is specific for PSA, does not involve known AR activators such as Src and AKT, and may contribute to AR signaling under conditions of increasing PSA levels in patients.


Subject(s)
Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/biosynthesis , Cell Line, Tumor , Down-Regulation , Humans , Male , Metribolone/pharmacology , Neoplasms, Hormone-Dependent/metabolism , Phosphorylation , Proto-Oncogene Proteins pp60(c-src)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...