Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167025, 2024 03.
Article in English | MEDLINE | ID: mdl-38237741

ABSTRACT

BACKGROUND: Bone marrow mesenchymal stem cells (BM-MSC) are an integral part of the BM niche that is essential to maintain hematopoietic homeostasis. In aplastic anemia (AA), a few studies have reported phenotypic defects in the BM-MSC, such as reduced proliferation, imbalanced differentiation, and apoptosis; however, the alterations at the molecular level need to be better characterized. Therefore, the current study aims to identify the causative factors underlying the compromised functions of AA BM-MSC that might eventually be contributing to the AA pathobiology. METHODS: We performed RNA sequencing (RNA-Seq) using the Illumina platform to comprehend the distinction between the transcriptional landscape of AA and control BM-MSC. Further, we validated the alterations observed in senescence by Senescence- associated beta-galactosidase (SA -ß-gal) assay, DNA damage by γH2AX staining, and telomere attrition by relative telomere length assessment and telomerase activity assay. We used qRT-PCR to analyze changes in some of the genes associated with these molecular mechanisms. RESULTS: The transcriptome profiling revealed enrichment of senescence-associated genes and pathways in AA BM-MSC. The senescent phenotype of AA BM-MSC was accompanied by enhanced SA -ß-gal activity and elevated expression of senescence associated genes TP53, PARP1, and CDKN1A. Further, we observed increased γH2AX foci indicating DNA damage, reduced telomere length, and diminished telomerase activity in the AA BM-MSC. CONCLUSION: Our results highlight that AA BM-MSC have a senescent phenotype accompanied by other cellular defects like DNA damage and telomere attrition, which are most likely driving the senescent phenotype of AA BM-MSC thus hampering their hematopoiesis supporting properties as observed in AA.


Subject(s)
Anemia, Aplastic , Mesenchymal Stem Cells , Telomerase , Humans , Anemia, Aplastic/genetics , Anemia, Aplastic/metabolism , Telomerase/genetics , Telomerase/metabolism , Mesenchymal Stem Cells/metabolism , Telomere/genetics , DNA Repair
2.
Metabolomics ; 19(12): 94, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975930

ABSTRACT

INTRODUCTION: Idiopathic acquired aplastic anemia (AA) is a bone marrow failure disorder where aberrant T-cell functions lead to depletion of hematopoietic stem and progenitor cells in the bone marrow (BM) microenvironment. T-cells undergo metabolic rewiring, which regulates their proliferation and differentiation. Therefore, studying metabolic variation in AA patients may aid us with a better understanding of the T-cell regulatory pathways governed by metabolites and their pathological engagement in the disease. OBJECTIVE: To identify the differential metabolites in BM plasma of AA patients, AA follow-up (AAF) in comparison to normal controls (NC) and to identify potential disease biomarker(s). METHODS: The study used 1D 1H NMR Carr-Purcell-Meiboom-Gill (CPMG) spectra to identify the metabolites present in the BM plasma samples of AA (n = 40), AAF (n = 16), and NC (n = 20). Metabolic differences between the groups and predictive biomarkers were identified by using multivariate analysis and receiver operating characteristic (ROC) module of Metaboanalyst V5.0 tool, respectively. RESULTS: The AA and AAF samples were well discriminated from NC group as per Principal Component analysis (PCA). Further, we found significant alteration in the levels of 17 metabolites in AA involved in amino-acid (Leucine, serine, threonine, phenylalanine, lysine, histidine, valine, tyrosine, and proline), carbohydrate (Glucose, lactate and mannose), fatty acid (Acetate, glycerol myo-inositol and citrate), and purine metabolism (hypoxanthine) in comparison to NC. Additionally, biomarker analysis predicted Hypoxanthine and Acetate can be used as a potential biomarker. CONCLUSION: The study highlights the significant metabolic alterations in the BM plasma of AA patients which may have implication in the disease pathobiology.


Subject(s)
Anemia, Aplastic , Bone Marrow , Humans , Bone Marrow/metabolism , Bone Marrow/pathology , Anemia, Aplastic/metabolism , Anemia, Aplastic/pathology , Metabolomics , Magnetic Resonance Spectroscopy , Biomarkers , Acetates , Hypoxanthines
3.
Curr Diabetes Rev ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37867275

ABSTRACT

Diabetes is a group of diseases marked by poor control of blood glucose levels. Diabetes mellitus (DM) occurs when pancreatic cells fail to make insulin, which is required to keep blood glucose levels stable, disorders, and so on. High glucose levels in the blood induce diabetic effects, which can cause catastrophic damage to bodily organs such as the eyes and lower extremities. Diabetes is classified into many forms, one of which is controlled by hyperglycemia or Diabetic Kidney Disease (DKD), and another that is not controlled by hyperglycemia (nondiabetic kidney disease or NDKD) and is caused by other factors such as hypertension, hereditary. DKD is associated with diabetic nephropathy (DN), a leading cause of chronic kidney disease (CKD) and end-stage renal failure. The disease is characterized by glomerular basement membrane thickening, glomerular sclerosis, and mesangial expansion, resulting in a progressive decrease in glomerular filtration rate, glomerular hypertension, and renal failure or nephrotic syndrome. It is also represented by some microvascular complications such as nerve ischemia produced by intracellular metabolic changes, microvascular illness, and the direct impact of excessive blood glucose on neuronal activity. Therefore, DKD-induced nephrotic failure is worse than NDKD. MicroRNAs (miRNAs) are important in the development and progression of several diseases, including diabetic kidney disease (DKD). These dysregulated miRNAs can impact various cellular processes, including inflammation, fibrosis, oxidative stress, and apoptosis, all of which are implicated during DKD. MiRNAs can alter the course of DKD by targeting several essential mechanisms. Understanding the miRNAs implicated in DKD and their involvement in disease development might lead to identifying possible therapeutic targets for DKD prevention and therapy. Therefore, this review focuses specifically on DKD-associated DN, as well as how in-silico approaches may aid in improving the management of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...