Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 2(3): 100678, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34355202

ABSTRACT

Extracellular traps (ETs) are composed of decondensed chromatin and are embedded with various antimicrobial proteins like myeloperoxidase and histones. Recently, we reported that dopamine (DA) induces ETs in BV2 microglia cell line and primary adult human microglia in a manner independent of cell death, reactive oxygen species, and actin polymerization. This protocol details how to characterize DA-induced ETs in BV2 microglia and human microglia. The protocols for characterization of ETs may also be used for other adherent cell lines. For complete details on the use and execution of this protocol, please refer to Agrawal et al. (2021).


Subject(s)
Extracellular Traps/metabolism , Immunoassay/methods , Microglia/metabolism , Animals , Cell Line , Chromatin/metabolism , Dopamine/pharmacology , Histones/genetics , Humans , Mice , Reactive Oxygen Species/metabolism
2.
iScience ; 24(1): 101968, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33458617

ABSTRACT

Dopamine (DA) plays many roles in the brain, especially in movement, motivation, and reinforcement of behavior; however, its role in regulating innate immunity is not clear. Here, we show that DA can induce DNA-based extracellular traps in primary, adult, human microglia and BV2 microglia cell line. These DNA-based extracellular traps are formed independent of reactive oxygen species, actin polymerization, and cell death. These traps are functional and capture fluorescein (FITC)-tagged Escherichia coli even when reactive oxygen species production or actin polymerization is inhibited. We show that microglial extracellular traps are present in Glioblastoma multiforme. This is crucial because Glioblastoma multiforme cells are known to secrete DA. Our findings demonstrate that DA plays a significant role in sterile neuro-inflammation by inducing microglia extracellular traps.

3.
J Vis Exp ; (162)2020 08 30.
Article in English | MEDLINE | ID: mdl-32925895

ABSTRACT

Microglia are resident innate immune cells of the central nervous system (CNS). Microglia play a critical role during development, in maintaining homeostasis, and during infection or injury. Several independent research groups have highlighted the central role that microglia play in autoimmune diseases, autoinflammatory syndromes and cancers. The activation of microglia in some neurological diseases may directly participate in pathogenic processes. Primary microglia are a powerful tool to understand the immune responses in the brain, cell-cell interactions and dysregulated microglia phenotypes in disease. Primary microglia mimic in vivo microglial properties better than immortalized microglial cell lines. Human adult microglia exhibit distinct properties as compared to human fetal and rodent microglia. This protocol provides an efficient method for isolation of primary microglia from adult human brain. Studying these microglia can provide critical insights into cell-cell interactions between microglia and other resident cellular populations in the CNS including, oligodendrocytes, neurons and astrocytes. Additionally, microglia from different human brains may be cultured for characterization of unique immune responses for personalized medicine and a myriad of therapeutic applications.


Subject(s)
Brain/anatomy & histology , Microglia/metabolism , Adult , Humans , Microglia/cytology
4.
Sci Rep ; 9(1): 8480, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186453

ABSTRACT

Gliomas are the most prevalent primary brain tumors with immense clinical heterogeneity, poor prognosis and survival. The nucleotide-binding domain, and leucine-rich repeat containing receptors (NLRs) and absent-in-melanoma 2 (AIM2) are innate immune receptors crucial for initiation and progression of several cancers. There is a dearth of reports linking NLRs and AIM2 to glioma pathology. NLRs are expressed by cells of innate immunity, including monocytes, macrophages, dendritic cells, endothelial cells, and neutrophils, as well as cells of the adaptive immune system. NLRs are critical regulators of major inflammation, cell death, immune and cancer-associated pathways. We used a data-driven approach to identify NLRs, AIM2 and NLR-associated gene expression and methylation patterns in low grade glioma and glioblastoma, using The Cancer Genome Atlas (TCGA) patient datasets. Since TCGA data is obtained from tumor tissue, comprising of multiple cell populations including glioma cells, endothelial cells and tumor-associated microglia/macrophages we have used multiple cell lines and human brain tissues to identify cell-specific effects. TCGA data mining showed significant differential NLR regulation and strong correlation with survival in different grades of glioma. We report differential expression and methylation of NLRs in glioma, followed by NLRP12 identification as a candidate prognostic marker for glioma progression. We found that Nlrp12 deficient microglia show increased colony formation while Nlrp12 deficient glioma cells show decreased cellular proliferation. Immunohistochemistry of human glioma tissue shows increased NLRP12 expression. Interestingly, microglia show reduced migration towards Nlrp12 deficient glioma cells.


Subject(s)
Brain Neoplasms/genetics , DNA-Binding Proteins/genetics , Glioblastoma/genetics , Intracellular Signaling Peptides and Proteins/genetics , Brain Neoplasms/pathology , Cell Proliferation , CpG Islands/genetics , DNA Methylation/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma/pathology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kaplan-Meier Estimate , Neoplasm Grading
5.
Cytokine Growth Factor Rev ; 34: 15-26, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28233643

ABSTRACT

Gliomas are the most common solid tumors among central nervous system tumors. Most glioma patients succumb to their disease within two years of the initial diagnosis. The median survival of gliomas is only 14.6 months, even after aggressive therapy with surgery, radiation, and chemotherapy. Gliomas are heavily infiltrated with myeloid- derived cells and endothelial cells. Increasing evidence suggests that these myeloid- derived cells interact with tumor cells promoting their growth and migration. NLRs (nucleotide-binding oligomerization domain (NOD)-containing protein like receptors) are a class of pattern recognition receptors that are critical to sensing pathogen and danger associated molecular patterns. Mutations in some NLRs lead to autoinflammatory diseases in humans. Moreover, dysregulated NLR signaling is central to the pathogenesis of several cancers, autoimmune and neurodegenerative diseases. Our review explores the role of angiogenic factors that contribute to upstream or downstream signaling pathways leading to NLRs. Angiogenesis plays a significant role in the pathogenesis of variety of tumors including gliomas. Though NLRs have been detected in several cancers including gliomas and NLR signaling contributes to angiogenesis, the exact role and mechanism of involvement of NLRs in glioma angiogenesis remain largely unexplored. We discuss cellular, molecular and genetic studies of NLR signaling and convergence of NLR signaling pathways with angiogenesis signaling in gliomas. This may lead to re-appropriation of existing anti-angiogenic therapies or development of future strategies for targeted therapeutics in gliomas.


Subject(s)
Angiogenesis Inducing Agents/metabolism , Glioma/physiopathology , Glioma/therapy , NLR Proteins/metabolism , Neovascularization, Pathologic , Animals , Glioma/blood supply , Humans , Immunity, Innate , Inflammasomes , Mice , NLR Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...