Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Radiat Environ Biophys ; 56(1): 55-61, 2017 03.
Article in English | MEDLINE | ID: mdl-28180988

ABSTRACT

To fully understand the radiation effects of the atomic bombing of Hiroshima and Nagasaki among the survivors, radiation from neutron-induced radioisotopes in soil and other materials should be considered in addition to the initial radiation directly received from the bombs. This might be important for evaluating the radiation risks to the people who moved to these cities soon after the detonations and probably inhaled activated radioactive "dust." Manganese-56 is known to be one of the dominant radioisotopes produced in soil by neutrons. Due to its short physical half-life, 56Mn emits residual radiation during the first hours after explosion. Hence, the biological effects of internal exposure of Wistar rats to 56Mn were investigated in the present study. MnO2 powder was activated by a neutron beam to produce radioactive 56Mn. Rats were divided into four groups: those exposed to 56Mn, to non-radioactive Mn, to 60Co γ rays (2 Gy, whole body), and those not exposed to any additional radiation (control). On days 3, 14, and 60 after exposure, the animals were killed and major organs were dissected and subjected to histopathological analysis. As described in more detail by an accompanying publication, the highest internal radiation dose was observed in the digestive system of the rats, followed by the lungs. It was found that the number of mitotic cells increased in the small intestine on day 3 after 56Mn and 60Co exposure, and this change persisted only in 56Mn-exposed animals. Lung tissue was severely damaged only by exposure to 56Mn, despite a rather low radiation dose (less than 0.1 Gy). These data suggest that internal exposure to 56Mn has a significant biological impact on the lungs and small intestine.


Subject(s)
Manganese Compounds/adverse effects , Neutrons , Oxides/adverse effects , Radiation Injuries/etiology , Radiation Injuries/pathology , Animals , Male , Nuclear Weapons , Radiation Dosage , Radioactivity , Rats , Rats, Wistar
3.
Radiat Environ Biophys ; 56(1): 47-54, 2017 03.
Article in English | MEDLINE | ID: mdl-28188481

ABSTRACT

There were two sources of ionizing irradiation after the atomic bombings of Hiroshima and Nagasaki: (1) initial gamma-neutron irradiation at the moment of detonation and (2) residual radioactivity. Residual radioactivity consisted of two components: radioactive fallout containing fission products, including radioactive fissile materials from nuclear device, and neutron-activated radioisotopes from materials on the ground. The dosimetry systems DS86 and DS02 were mainly devoted to the assessment of initial radiation exposure to neutrons and gamma rays, while only brief considerations were given for the estimation of doses caused by residual radiation exposure. Currently, estimation of internal exposure of atomic bomb survivors due to dispersed radioactivity and neutron-activated radioisotopes from materials on the ground is a matter of some interest, in Japan. The main neutron-activated radionuclides in soil dust were 24Na, 28Al, 31Si, 32P, 38Cl, 42K, 45Ca, 46Sc, 56Mn, 59Fe, 60Co, and 134Cs. The radionuclide 56Mn (T 1/2 = 2.58 h) is known as one of the dominant beta- and gamma emitters during the first few hours after neutron irradiation of soil and other materials on ground, dispersed in the form of dust after a nuclear explosion in the atmosphere. To investigate the peculiarities of biological effects of internal exposure to 56Mn in comparison with external gamma irradiation, a dedicated experiment with Wistar rats exposed to neutron-activated 56Mn dioxide powder was performed recently by Shichijo and coworkers. The dosimetry required for this experiment is described here. Assessment of internal radiation doses was performed on the basis of measured 56Mn activity in the organs and tissues of the rats and of absorbed fractions of internal exposure to photons and electrons calculated with the MCNP-4C Monte Carlo using a mathematical rat phantom. The first results of this international multicenter study show that the internal irradiation due to incorporated 56Mn powder is highly inhomogeneous, and that the most irradiated organs of the experimental animals are: large intestine, small intestine, stomach, and lungs. Accumulated absorbed organ doses were 1.65, 1.33, 0.24, 0.10 Gy for large intestine, small intestine, stomach, and lungs, respectively. Other organs were irradiated at lower dose levels. These results will be useful for interpretation of the biological effects of internal exposure of experimental rats to powdered 56Mn as observed by Shichijo and coworkers.


Subject(s)
Manganese Compounds/chemistry , Manganese Compounds/metabolism , Neutrons , Oxides/chemistry , Oxides/metabolism , Radioisotopes , Animals , Powders , Radiation Dosage , Radioactivity , Radiometry , Rats , Rats, Wistar
4.
Endocr J ; 63(5): 457-67, 2016 May 31.
Article in English | MEDLINE | ID: mdl-26935218

ABSTRACT

Oncocytic follicular adenomas (FAs) of the thyroid are neoplasms of follicular cell origin that are predominantly composed of large polygonal cells with eosinophilic and granular cytoplasm. However, the pathological characteristics of these tumors are largely unexplored. Both the initiation and progression of cancer can be caused by an accumulation of genetic mutations that can induce genomic instability. Thus, the aim of this study was to evaluate the extent of genomic instability in oncocytic FA. As the presence of p53-binding protein 1 (53BP1) in nuclear foci has been found to reflect DNA double-strand breaks that are triggered by various stresses, the immunofluorescence expression pattern of 53BP-1 was assessed in oncocytic and conventional FA. The association with the degree of DNA copy number aberration (CNA) was also evaluated using array-based comparative genomic hybridization. Data from this study demonstrated increased 53BP1 expression (i.e., "unstable" expression) in nuclear foci of oncocytic FA and a higher incidence of CNAs compared with conventional FA. There was also a particular focus on the amplification of chromosome 1p36 in oncocytic FA, which includes the locus for Tumor protein 73, a member of the p53 family implicated as a factor in the development of malignancies. Further evaluations revealed that unstable 53BP1 expression had a significant positive correlation with the levels of expression of Tumor protein 73. These data suggest a higher level of genomic instability in oncocytic FA compared with conventional FA, and a possible relationship between oncocytic FA and abnormal amplification of Tumor protein 73.


Subject(s)
Adenocarcinoma, Follicular/genetics , Adenoma, Oxyphilic/genetics , Adenoma/genetics , Genomic Instability , Thyroid Neoplasms/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Adenocarcinoma, Follicular/complications , Adenocarcinoma, Follicular/pathology , Adenoma/complications , Adenoma/pathology , Adenoma, Oxyphilic/complications , Adenoma, Oxyphilic/pathology , Adult , Aged , Aged, 80 and over , Comparative Genomic Hybridization , DNA Copy Number Variations , Female , Gene Expression Regulation, Neoplastic , Genomic Instability/genetics , Humans , Male , Middle Aged , Mutation , Thyroid Neoplasms/complications , Thyroid Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...