Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Diabet Med ; 36(12): 1694-1702, 2019 12.
Article in English | MEDLINE | ID: mdl-31276222

ABSTRACT

AIM: To examine the extent to which discriminatory testing using antibodies and Type 1 diabetes genetic risk score, validated in European populations, is applicable in a non-European population. METHODS: We recruited 127 unrelated children with diabetes diagnosed between 9 months and 5 years from two centres in Iran. All children underwent targeted next-generation sequencing of 35 monogenic diabetes genes. We measured three islet autoantibodies (islet antigen 2, glutamic acid decarboxylase and zinc transporter 8) and generated a Type 1 diabetes genetic risk score in all children. RESULTS: We identified six children with monogenic diabetes, including four novel mutations: homozygous mutations in WFS1 (n=3), SLC19A2 and SLC29A3, and a heterozygous mutation in GCK. All clinical features were similar in children with monogenic diabetes (n=6) and in the rest of the cohort (n=121). The Type 1 diabetes genetic risk score discriminated children with monogenic from Type 1 diabetes [area under the receiver-operating characteristic curve 0.90 (95% CI 0.83-0.97)]. All children with monogenic diabetes were autoantibody-negative. In children with no mutation, 59 were positive to glutamic acid decarboxylase, 39 to islet antigen 2 and 31 to zinc transporter 8. Measuring zinc transporter 8 increased the number of autoantibody-positive individuals by eight. CONCLUSIONS: The present study provides the first evidence that Type 1 diabetes genetic risk score can be used to distinguish monogenic from Type 1 diabetes in an Iranian population with a large number of consanguineous unions. This test can be used to identify children with a higher probability of having monogenic diabetes who could then undergo genetic testing. Identification of these individuals would reduce the cost of treatment and improve the management of their clinical course.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , Autoantibodies/blood , Child, Preschool , Consanguinity , Diabetes Mellitus, Type 1/classification , Diabetes Mellitus, Type 1/immunology , Female , Glucokinase/genetics , Glutamate Decarboxylase/immunology , High-Throughput Nucleotide Sequencing , Homozygote , Humans , Infant , Iran , Islets of Langerhans/immunology , Male , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Mutation , Nucleoside Transport Proteins/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 8/immunology , Zinc Transporter 8/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...