Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Acta Neuropathol ; 135(2): 267-283, 2018 02.
Article in English | MEDLINE | ID: mdl-29149419

ABSTRACT

Although a growing body of evidence indicates that phenotypic plasticity exhibited by glioblastoma cells plays a central role in tumor development and post-therapy recurrence, the master drivers of their aggressiveness remain elusive. Here we mapped the changes in active (H3K4me3) and repressive (H3K27me3) histone modifications accompanying the repression of glioblastoma stem-like cells tumorigenicity. Genes with changing histone marks delineated a network of transcription factors related to cancerous behavior, stem state, and neural development, highlighting a previously unsuspected association between repression of ARNT2 and loss of cell tumorigenicity. Immunohistochemistry confirmed ARNT2 expression in cell sub-populations within proliferative zones of patients' glioblastoma. Decreased ARNT2 expression was consistently observed in non-tumorigenic glioblastoma cells, compared to tumorigenic cells. Moreover, ARNT2 expression correlated with a tumorigenic molecular signature at both the tissue level within the tumor core and at the single cell level in the patients' tumors. We found that ARNT2 knockdown decreased the expression of SOX9, POU3F2 and OLIG2, transcription factors implicated in glioblastoma cell tumorigenicity, and repressed glioblastoma stem-like cell tumorigenic properties in vivo. Our results reveal ARNT2 as a pivotal component of the glioblastoma cell tumorigenic signature, located at a node of a transcription factor network controlling glioblastoma cell aggressiveness.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain Neoplasms/metabolism , Chromatin/metabolism , Glioblastoma/metabolism , Aged , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cells, Cultured , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioblastoma/genetics , Glioblastoma/pathology , Histone Code , Homeodomain Proteins/metabolism , Humans , Mice, Nude , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/physiopathology , Neoplasm Transplantation , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oligodendrocyte Transcription Factor 2/metabolism , POU Domain Factors/metabolism , SOX9 Transcription Factor/metabolism
2.
Med Sci (Paris) ; 30(5): 532-6, 2014 May.
Article in French | MEDLINE | ID: mdl-24939540

ABSTRACT

Sirtuin 2 (SIRT2) is an NAD(+) (nicotinamide adenine dinucleotide)-dependent deacetylase. Studies of this protein have often been divergent, highlighting the dependence of pleiotropic effects of SIRT2 on cellular context. The natural polyphenol resveratrol is known to exert opposite actions on neural cells according to their normal or cancerous status. We have recently shown the involvement of SIRT2 in the antiproliferative effects of resveratrol on primary cultures of human glioblastoma stem cells. SIRT2 could become a new therapeutic target.


Subject(s)
Sirtuin 2/metabolism , Animals , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Longevity/genetics , Neoplasms/genetics , Neoplasms/pathology , Sirtuin 2/chemistry
3.
Stem Cell Rev Rep ; 10(1): 103-13, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23955573

ABSTRACT

Glioblastomas, the most common form of primary brain tumors, are the fourth cause of death by cancer in adults. Increasing evidences suggest that glioblastoma resistance to existing radio- and chemotherapies rely on glioblastoma stem cells (GSCs). GSCs are endowed with a unique combination of stem-like properties alike to normal neural stem cells (NSCs), and of tumor initiating properties. The natural polyphenol resveratrol is known to exert opposite actions on neural cells according to their normal or cancerous status. Here, we used resveratrol to explore the molecular mechanisms differing between GSCs and NSCs. We observed a dual action of resveratrol on GSCs: resveratrol blocked GSC proliferation up to 150 µM and induced their necrosis at higher doses. On the opposite, resveratrol had no effect on NSC behavior. To determine the mechanisms underlying resveratrol effects, we focused our attention on the family of NAD-dependent deacetylases sirtuins (SIRT). A member of this family, SIRT1, has been repetitively shown to constitute a preferential resveratrol target, at least in normal cells. Western blot analysis showed that SIRT1 and SIRT3 were expressed by both GSCs and NSCs whereas SIRT2 expression was restricted to GSCs. Pharmacological blockade of SIRT2 activity or down-regulation of SIRT2 expression with siRNAs counteracted the inhibitory effect of resveratrol on cell proliferation. On the contrary, inhibition of SIRT2 activity or expression did not counteract GSC necrosis observed in presence of high doses of resveratrol. Our results highlight SIRT2 as a novel target for altering GSC properties.


Subject(s)
Glioblastoma/metabolism , Glioblastoma/pathology , Necrosis/chemically induced , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Sirtuin 2/metabolism , Stilbenes/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Glioblastoma/drug therapy , Humans , Neoplastic Stem Cells/drug effects , RNA, Small Interfering/pharmacology , Resveratrol , Sirtuin 2/antagonists & inhibitors , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...