Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 23(1): 62, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402147

ABSTRACT

BACKGROUND: 1,2-propanediol (1,2-PDO) is widely used in the cosmetic, food, and drug industries with a worldwide consumption of over 1.5 million metric tons per year. Although efforts have been made to engineer microbial hosts such as Corynebacterium glutamicum to produce 1,2-PDO from renewable resources, the performance of such strains is still improvable to be competitive with existing petrochemical production routes. RESULTS: In this study, we enabled 1,2-PDO production in the genome-reduced strain C. glutamicum PC2 by introducing previously described modifications. The resulting strain showed reduced product formation but secreted 50 ± 1 mM D-lactate as byproduct. C. glutamicum PC2 lacks the D-lactate dehydrogenase which pointed to a yet unknown pathway relevant for 1,2-PDO production. Further analysis indicated that in C. glutamicum methylglyoxal, the precursor for 1,2-PDO synthesis, is detoxified with the antioxidant native mycothiol (MSH) by a glyoxalase-like system to lactoylmycothiol and converted to D-lactate which is rerouted into the central carbon metabolism at the level of pyruvate. Metabolomics of cell extracts of the empty vector-carrying wildtype, a 1,2-PDO producer and its derivative with inactive D-lactate dehydrogenase identified major mass peaks characteristic for lactoylmycothiol and its precursors MSH and glucosaminyl-myo-inositol, whereas the respective mass peaks were absent in a production strain with inactivated MSH synthesis. Deletion of mshA, encoding MSH synthase, in the 1,2-PDO producing strain C. glutamicum ΔhdpAΔldh(pEKEx3-mgsA-yqhD-gldA) improved the product yield by 56% to 0.53 ± 0.01 mM1,2-PDO mMglucose-1 which is the highest value for C. glutamicum reported so far. CONCLUSIONS: Genome reduced-strains are a useful basis to unravel metabolic constraints for strain engineering and disclosed in this study the pathway to detoxify methylglyoxal which represents a precursor for 1,2-PDO production. Subsequent inactivation of the competing pathway significantly improved the 1,2-PDO yield.


Subject(s)
Corynebacterium glutamicum , Propylene Glycol , Propylene Glycols , Propylene Glycol/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Pyruvaldehyde/metabolism , Lactates/metabolism , Metabolic Engineering
2.
Microbiol Resour Announc ; 12(4): e0127722, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36988507

ABSTRACT

Pseudomonas carboxydohydrogena is a lithoautotrophic and obligate aerobic alphaproteobacterium, which has the unique ability to utilize CO, CO2, H2, and mixtures thereof as sole carbon and energy sources. Here, we report the complete genome sequence of type strain DSM 1083 and its close relation to Afipia carboxidovorans strain OM5.

SELECTION OF CITATIONS
SEARCH DETAIL
...