Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vector Borne Zoonotic Dis ; 23(2): 63-74, 2023 02.
Article in English | MEDLINE | ID: mdl-36577051

ABSTRACT

Background: High frequency of Helicobacter pylori infection and the unknown mode of transmission prompted us to investigate H. pylori-wild housefly relationship. H. pylori causes chronic gastritis, peptic ulcers, and stomach cancer. H. pylori persists in the gut of the experimentally infected houseflies. The existence of H. pylori strains isolated from wild houseflies, on the other hand, has never been documented. Materials and Methods: In this study, 902 wild houseflies from different sites were identified as Musca domestica, then 60 flies were screened by traditional microbiological techniques and H. pylori-specific 16S rRNA gene. The antibiotic resistance (ART) was investigated phenotypically. Wild housefly gut bacterial isolates were further evaluated genotypically to have 23S rRNA gene mutation related to clarithromycin resistance. To find efficient therapeutic alternatives, the potency of three plant extracts (garlic, ginger, and lemon) and the wasp, Vespa orientalis venom was evaluated against H. pylori. The cytotoxic effect of the crude wasp venom, the most potent extract, against Vero and Colon cancer (Caco2) cell lines was investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: All isolates from houseflies were positive. The isolated bacteria have variable resistance to frequently used antibiotics in all isolates. Minimum inhibitory concentration values of 15.625 mg/mL for both ginger and lemon extracts, 7.8125 mg/mL for garlic extract, and 0.0313 mg/mL for wasp venom were recorded. Wasp venom has the most potent antibacterial activity compared with the four antibiotics that are currently used in therapies against H. pylori. Conclusion: We conclude that wild houseflies can play a role in disseminating H. pylori. The housefly gut may be a suitable environment for the horizontal transfer of ART genes among its associated microbiome and H. pylori. Wasp venom proved its potential activity as a new and effective anti-H. pylori drug for both therapeutic and preventative usage.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Houseflies , Animals , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Helicobacter Infections/veterinary , Houseflies/microbiology , Helicobacter pylori/genetics , Caco-2 Cells , RNA, Ribosomal, 16S , Wasp Venoms/pharmacology , Wasp Venoms/therapeutic use , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests/veterinary
2.
Antibiotics (Basel) ; 10(10)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34680844

ABSTRACT

Egyptian deserts are an underexplored ecological niche, especially the Sinai Peninsula. In our recent study, we explored this extreme environment and shed light on the bioactive capabilities of desert Actinobacteria isolated from Sinai. Fifty desert Actinobacteria were isolated from the Sinai desert using mineral salt media, basal media, and starch casein media. The filtrate of Streptomyces sp. DH 7 displayed a high inhibitory effect against multidrug-resistant Staphylococcus aureus (MRSA) strains. The 16S rDNA sequencing confirmed that isolate DH7 belongs to the genus Streptomyces. The NJ phylogenetic tree showed relatedness to the Streptomyces flavofuscus strain NRRL B-2594 and Streptomyces pratensis strain ch24. The minimum inhibitory concentrations against MRSA were 16 and 32 µg/µL. Chemical investigation of the ethyl acetate extract of Streptomyces sp. DH7 led to the isolation and purification of natural products 1-4. Structure elucidation of the purified compounds was performed using detailed spectroscopic analysis including 1 and 2D NMR, and ESI-MS spectrometry. To the best of our knowledge, this is the first report for the isolation of compounds 1-4 from a natural source, while synthetic analogs were previously reported in the literature. Compounds 3-4 were identified as actinomycin D analogues and this is the first report for the production of actinomycin D analogs from the Sinai desert with an inhibitory effect against MRSA. We indorse further study for this analog that can develop enhanced antimicrobial activities. We confirm that the desert ecosystems in Egypt are rich sources of antibiotic-producing Actinobacteria.

3.
J Genet Eng Biotechnol ; 19(1): 24, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33523315

ABSTRACT

BACKGROUND: This study aimed to isolate potent thermophilic and amylolytic bacteria from a hot spring of Pharaoh's bath, Sinai, Egypt, and screen its degradative activity. The amylolytic activity was further optimized using a statistical full factorial design followed by response surface methodology. RESULTS: A thermophilic bacterium was isolated from the hot spring of Pharaoh's Bath, Sinai, Egypt. The isolate produced amylase, cellulase, and caseinase and was identified by 16S rRNA gene sequencing as Parageobacillus thermoglucosidasius Pharon1 (MG965879). A growth medium containing 1% soluble starch was found to optimize the amylase production. Dinitrosalycalic acid method (DNS) was used to estimate the amount of reducing sugar produced. Statistical full factorial and response surface designs were employed to optimize physical variables affecting the α-amylase production and determine the significant interactions of the studied variables during the fermentation process. According to the results obtained by the response optimizer, the maximum amylase activity reached 76.07 U/mL/ min at 54.1°C, pH 5.6 after 98.5 h incubation under aerobic conditions. Moreover, the produced enzyme was thermostable and retained most of its activity when exposed to a high temperature of 100°C for 120 min. Maximum enzyme activity was attained when the enzyme was incubated at 70°C for 30 min. CONCLUSIONS: This is the first report of the production of thermostable α-amylase by the potent thermophilic Parageobacillus thermoglucosidasius. The enzyme endured extreme conditions of temperature and pH which are important criteria for commercial and industrial applications.

4.
Curr Microbiol ; 77(5): 786-794, 2020 May.
Article in English | MEDLINE | ID: mdl-31925514

ABSTRACT

The aim of this study was to isolate thermophilic bacteria to be used in in situ bioremediation of molybdate at elevated temperatures. Two molybdate reducing bacteria (Pharon2 and Pharon3) were isolated from the hot Spring at Pharaoh's Bath, Sinai, Egypt. The isolates were identified by 16S rRNA genes sequencing and were submitted to GenBank as Bacillus tequilensis strain Pharon2 (MK078034) and Bacillus sonorensis strain Pharon3 (MK078035). The molybdenum blue production was optimized using multifactorial statistical approaches, Plackett-Burman and central composite designs. According to the results obtained by response optimizer, the maximum molybdenum blue production achieved was 1.04 and 1.12 represented as absorbance at 865 nm, with the optimum salt concentration of 1.1 and 2.5%; at pH 7.02 and 7.07; incubation temperature of 46.1 and 52.2 °C; sucrose and glucose as an electron donor for Bacillus tequilensis strain Pharon2 and Bacillus sonorensis strain Pharon3, respectively. In conclusion, the thermophilic bacterial isolates belonging to the genus Bacillus could be used in in situ bioremediation under elevated temperatures. To the best of our knowledge, this is the first record of molybdenum blue production by thermophilic Bacillus tequilensis and Bacillus sonorensis.


Subject(s)
Bacillus/metabolism , Hot Temperature , Molybdenum/metabolism , Soil Microbiology , Bacillus/classification , Bacillus/isolation & purification , Biodegradation, Environmental , DNA, Bacterial/genetics , Egypt , Hot Springs/microbiology , Hydrogen-Ion Concentration , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...