Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Nephrol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926177

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is a prevalent health issue that can have detrimental effects on the quality of life (QoL) of children. Nevertheless, with adequate management and support, many children with CKD can have satisfying lives. The study aimed to investigate the effect of muscle stretching and isometric exercises on QoL of children undergoing hemodialysis. METHODS: Sixty-eight children aged 6-18 years with kidney failure undergoing hemodialysis at Assiut University Children Hospital were included. They were randomly assigned to two groups. The study group received a 40-min exercise program three times per week for 2 months, while the control group received routine hospital care. For outcome measures, two tools were used: a simple questionnaire sheet for personal and medical data and PedsQL™ scale. RESULTS: After 2 months of exercise, it was shown that most children in the study group (66.7%) had good QoL, in contrast to only 3.3% in the control group, with a highly statistically significant variation between the two examined groups pertaining to the health-related QoL scale (P value = 0.001) after exercise. CONCLUSION: The intensity of care for children on hemodialysis has a distinguished impact upon their quality of life. The implementation of muscle stretching and isometric exercises during hemodialysis represents an important aspect of such care that may be associated with significant improvement in all domains of QoL. Children undergoing hemodialysis need well-organized programs that cover all physical and psychological aspects with smart time manipulation and increased attention from their staff.

2.
Int J Dent ; 2024: 4670728, 2024.
Article in English | MEDLINE | ID: mdl-38585251

ABSTRACT

Purpose: The aim of this study was to compare and assess the stress distribution and failure possibility of endodontically treated central incisor protected with endocrowns with different heights, with various CAD-CAM blocks such as IPS e.max CAD, Katana Zirconia, and Zolid Fx Zirconia. Materials and Methods: A root canal-treated central incisor (plastic model) restored with an endocrown was scanned with a laser scanner to prepare a control model with a CAD software and then transferred to an FEA software. Proposed crown heights were 2, 4, and 6 mm. The model that was duplicated and restored with CAD-CAM blocks, IPS e.max CAD, Katana Zirconia, and Zolid Fx Zirconia were tested as endocrown materials. Bone geometry was simplified to be two coaxial cylinders in all models. Stress distributions under 50 N axial and oblique (with 135° angle from the vertical plane) loading were analyzed. Each model was then subjected to two occlusal loading conditions-the lingual slope of the incisal edge and the junction between incisal and middle thirds. Eighteen runs and calculations were performed to determine the endocrown height and material effect. Results: The results showed a minor or negligible effect of changing the endocrown material. Increasing endocrown height was shown to reduce stresses and deformations on most of the model components (bone, gutta-percha, periodontal ligament, and endocrown), except root and cement. Differences in deformations and stresses between the two models of 4 and 6 mm were relatively smaller (ranged between 1% and 30%) compared to those between the 2 and 4 mm models (ranged between 10% and 400%). Conclusions: The material used to fabricate endocrowns did not show considerable effect on the underlying structures. However, the endocrown design (2, 4, and 6 mm height) was shown to affect all components of the studied systems. Increasing endocrown height is recommended for bone, periodontal ligaments, and endocrown body, as it reduces stresses and deformations. On the other hand, it dramatically increases stresses on the root and cement layer. Smaller endocrown sizes represent an acceptable treatment option when there is a healthy periodontal state, while using larger sizes will be more suitable when there is a periodontal compromise with bone loss.

3.
Mol Biol Rep ; 51(1): 143, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236338

ABSTRACT

BACKGROUND: It has been interesting to compare the levels of antimicrobial resistance and the virulence characteristics of uropathogenic Escherichia coli (UPEC) strains of certain phylogenetic groups. The purpose of this study was to identify the frequency of phylogenetic groups, adhesin genes, antibiotic sensitivity patterns, and extended spectrum-lactamases (ESBLs) genes in hospital-acquired UPEC. METHODS: After UPEC isolation, the disc diffusion method was used to assess its susceptibility to antibiotics. Combination disc testing confirmed the existence of ESBL producers. Polymerase chain reaction (PCR) was used to detect genes for adhesin and ESBLs. RESULTS: One hundred and twenty-eight E. coli were isolated which had the highest resistance to tetracycline (96%) followed by cefoxitin (93%), cefepime (92%), ceftazidime (79%), aztreonam (77%) and sulfamethoxazole -trimethoprim (75%). About 57% of isolates were phenotypically ESBLs positive and they were confirmed by PCR. B2 phylogroup (41%) was the most frequent in E. coli isolates then group D (30%), group A (18%), and lastly group B1 (11%). ESBLs genes were more significantly prevalent in phylogroups B2 and D than other phylogroups (P < 0.001). Regarding adhesin genes, both fim H and afa were more significantly associated with group B2 than other groups (P < 0.009, < 0.032), respectively. In ESBL-positive isolates, both genes were more significantly detected compared to negative ones (P < 0.001). CONCLUSION: Phylogroups B2 and D of UPEC are important reservoirs of antimicrobial resistance and adhesion genes. Detection of ESBL-producing E. coli is important for appropriate treatment as well as for effective infection control in hospitals.


Subject(s)
Uropathogenic Escherichia coli , Phylogeny , Uropathogenic Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Hospitals , Trimethoprim, Sulfamethoxazole Drug Combination , beta-Lactamases/genetics
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(4): 613-622, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36988350

ABSTRACT

Charcot-Leyden crystals (CLCs) are the hallmark of many eosinophilic-based diseases, such as asthma. Here, we report that reduced glutathione (GSH) disrupts CLCs and inhibits crystallization of human galectin-10 (Gal-10). GSH has no effect on CLCs from monkeys ( Macaca fascicularis or M. mulatta), even though monkey Gal-10s contain Cys29 and Cys32. Interestingly, human Gal-10 contains another cysteine residue (Cys57). Because GSH cannot disrupt CLCs formed by the human Gal-10 variant C57A or inhibit its crystallization, the effects of GSH on human Gal-10 or CLCs most likely occur by chemical modification of Cys57. We further report the crystal structures of Gal-10 from M. fascicularis and M. mulatta, along with their ability to bind to lactose and inhibit erythrocyte agglutination. Structural comparison with human Gal-10 shows that Cys57 and Gln75 within the ligand binding site are responsible for the loss of lactose binding. Pull-down experiments and mass spectrometry show that human Gal-10 interacts with tubulin α-1B, with GSH, GTP and Mg 2+ stabilizing this interaction and colchicine inhibiting it. Overall, this study enhances our understanding of Gal-10 function and CLC formation and suggests that GSH may be used as a pharmaceutical agent to ameliorate CLC-induced diseases.


Subject(s)
Asthma , Eosinophils , Humans , Eosinophils/metabolism , Galectins/metabolism , Glutathione , Lactose/pharmacology , Lactose/metabolism
5.
Biol Trace Elem Res ; 200(2): 582-590, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33759109

ABSTRACT

Nanotechnology is a possible solution to the drawbacks of cancer therapy because it decreases the clinical side effects of chemotherapeutic drugs and increases their clinical activity. Thus, this work compared the in vitro cytotoxic activity and in vivo side effects of cisplatin (CP) with those of CP-loaded green silver nanoparticles (CP-AgNPs). The cytotoxic activity of CP, green AgNPs, and CP-AgNPs against PC-3, a human prostate cancer cell line, was assessed using MTT assay. CP-AgNPs had a superior cytotoxic effect on PC-3 cells with a 50% inhibition of viability (IC50) of 27.05 µg/mL, followed by CP with an IC50 of 57.64 µg/mL and AgNPs with an IC50 125.4 µg/mL. To evaluate in vivo side effects, 40 male adult Wistar rats were assigned into four groups and intraperitoneally injected with normal saline (control), CP (2.5 mg/kg body weight), green AgNPs (0.1 mL/kg body weight), and CP-AgNPs (2.5 mg/kg body weight). Intraperitoneal CP injection caused a substantial reduction in erythrocyte and leukocyte counts and hemoglobin concentration and a marked increase in urea and creatinine levels and disturbed the renal oxidant/antioxidant status. Furthermore, it caused noticeable structural alterations and significant upregulation of renal Bax and caspase-3 mRNA along with a significant downregulation of B-cell lymphoma 2 mRNA expressions. The loading of CP on green AgNPs significantly relieved the CP-induced pathological alterations and considerably enhanced its therapeutic effectiveness on PC-3 cells. These outcomes reflect the possible use of CP-AgNPs as a more efficient and safer anticancer agent than free CP.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Prostatic Neoplasms , Animals , Cell Line , Cisplatin , Humans , Male , Plant Extracts , Prostatic Neoplasms/drug therapy , Rats , Rats, Wistar , Silver
SELECTION OF CITATIONS
SEARCH DETAIL
...