Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(12): e0208226, 2018.
Article in English | MEDLINE | ID: mdl-30586671

ABSTRACT

This study attempts to develop empirical correlations between average penetration resistance ([Formula: see text]), averaged velocities over depth up to bedrock depth ([Formula: see text]) and 30 m ([Formula: see text]) for shallow depth sites (having bedrock at a depth less than 25 m). A total of 63 shallow sites were assessed for penetration resistance values up to the bedrock from Standard Penetration Tests (SPT) and dynamic soil property analysis, i.e., Shear Wave Velocity (VS) from Multichannel Analysis of Surface Waves. The study shows that 30 m averaged shear wave velocities are more than the average velocity up to bedrock depth in shallow bedrock sites because of inclusion of rock site velocity. Furthermore, averaged SPT-N([Formula: see text]) and average VS ([Formula: see text]) up to bedrock depth were correlated with the 30 m average([Formula: see text]) values. This is the first attempt in developing empirical relationships of this kind for seismic site classification. These correlations can be made useful for seismic site classification of sites in regions with Standard Penetration Test (NSPT) values and limited VS values. Further surface and bedrock motion recordings of 12 selected KiK-net shallow depth sites were collected and amplifications were estimated with the respective peak ground acceleration, spectral acceleration and thereby related to the average shear wave velocity up to bedrock and 30 m. The results show that the amplification is better correlated to the [Formula: see text] than [Formula: see text] for shallow depth sites, and more data can be added to strengthen this correlation.


Subject(s)
Models, Theoretical , Soil
2.
Materials (Basel) ; 10(6)2017 May 29.
Article in English | MEDLINE | ID: mdl-28772955

ABSTRACT

Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min-1) was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT) samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT) samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

3.
PLoS One ; 11(9): e0161137, 2016.
Article in English | MEDLINE | ID: mdl-27611854

ABSTRACT

Ground-motion prediction equations that are used to predict acceleration values are generally developed for a 5% viscous damping ratio. Special structures and structures that use damping devices may have damping ratios other than the conventionally used ratio of 5%. Hence, for such structures, the intensity measures predicted by conventional ground-motion prediction equations need to be converted to a particular level of damping using a damping reduction factor (DRF). DRF is the ratio of the spectral ordinate at 5% damping to the ordinate at a defined level of damping. In this study, the DRF has been defined using the spectral ordinate of pseudo-spectral acceleration and the effect of factors such as the duration of ground motion, magnitude, hypocenter distance, site classification, damping, and period are studied. In this study, an attempt has also been made to develop an empirical model for the DRF that is specifically applicable to the Himalayan region in terms of these predictor variables. A recorded earthquake with 410 horizontal motions was used, with data characterized by magnitudes ranging from 4 to 7.8 and hypocentral distances up to 520 km. The damping was varied from 0.5-30% and the period range considered was 0.02 to 10 s. The proposed model was compared and found to coincide well with models in the existing literature. The proposed model can be used to compute the DRF at any specific period, for any given value of predictor variables.


Subject(s)
Models, Theoretical , Algorithms
4.
Tissue Cell ; 45(1): 39-46, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23107980

ABSTRACT

The ultrastructure of the ovary and the female atrium during cocoon formation was investigated in the subterranean freshwater planarian Dendrocoelum constrictum. In the peripheral portion of the ovary, the oogonia are recognized as undifferentiated germ cells, which are morphologically similar to neoblasts that have a high nucleus/cytoplasm ratio. Oocyte maturation is characterized by a marked growth of the cytoplasm because of the accumulation of cytoplasmic organelles and inclusions. The Golgi complexes begin to increase within the ooplasm and produce vesicles with an electron-dense content that fuse to produce larger spherical globules with homogeneous and electron-dense material. In the mature oocyte, the spherical globules migrate toward the cortical ooplasm, forming a continuous monolayer. We confirm that these spherical globules, which represent cortical granules rather than eggshell globules, vary in size up to 2µm and their electron-dense content shows concentric thin bands. After leaving the ovary through the oviduct, the mature and fertilized oocytes reach the female atrium where they are packaged with thousands of vitelline cells in the cocoon shell. Based on our ultrastructural analysis, we demonstrate that the wall of the cocoon shell is composed of two layers, each of which has a different origin. The shell granules extruded from the vitelline cells are involved in the secretion of the inner layer of the cocoon shell, whereas the outer layer of the cocoon shell is synthesized by the epithelial cells in the genital atrium.


Subject(s)
Oogenesis , Ovary/ultrastructure , Planarians/ultrastructure , Animals , Cytoplasm/ultrastructure , Female , Fresh Water , Golgi Apparatus/ultrastructure , Microscopy, Electron, Transmission , Oocytes/ultrastructure , Organelles/ultrastructure , Ovary/growth & development , Planarians/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...